That looks like an exponential.

Calculus Level 5

I = x n 1 + x + x 2 2 ! + . . . + x n n ! d x I = \int \dfrac{x^n}{1+x+\frac{x^2}{2!}+ ... + \frac{x^n}{n!}}dx n n is a positive integer.
Let I I equal to f ( x , n ) + C f(x,n) + C where C C is a constant.
Submit the value of lim n f ( x , n ) n ! \lim_{n \rightarrow \infty} \dfrac{f(x,n)}{n!}


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kunal Gupta
Feb 20, 2019

We have I = x n 1 + x + x 2 2 ! + . . . + x n n ! d x I = \int \dfrac{x^n}{1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}}dx Let g ( x , n ) g(x,n) be defined as g ( x , n ) = ln ( k = 0 n x k k ! ) g(x,n) = \ln \left( \sum_{k=0}^{n}\frac{x^k}{k!}\right) g ( x , n ) x = k = 0 n 1 x k k ! k = 0 n x k k ! \dfrac{\partial g(x,n)}{\partial x} = \dfrac{\displaystyle \sum_{k=0}^{n-1}\frac{x^k}{k!}}{\displaystyle \sum_{k=0}^{n}\frac{x^k}{k!}} = 1 1 n ! x n k = 0 n x k k ! = 1 - \dfrac{1}{n!}\dfrac{x^n}{\displaystyle \sum_{k=0}^{n}\frac{x^k}{k!}} Or x n k = 0 n x k k ! = n ! ( 1 g ( x , n ) ) \dfrac{x^n}{\displaystyle \sum_{k=0}^{n}\frac{x^k}{k!}} = n!(1-g'(x,n)) Hence, I = n ! ( 1 g ( x , n ) ) d x = n ! ( x g ( x , n ) ) + C I = \int n!(1-g'(x,n))dx = n!(x - g(x,n)) + C So, f ( x , n ) = n ! ( x ln ( k = 0 n x k k ! ) ) f(x,n) = n!(x- \ln\left(\sum_{k=0}^{n}\frac{x^k}{k!}\right)) lim n f ( x , n ) n ! = x ln ( e x ) = 0 \lim_{n \rightarrow \infty} \dfrac{f(x,n)}{n!} = x - \ln(e^x) = 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...