The unoriginal.

Algebra Level 3

Solve the following system of equations:

x + y 1 = log 2 ( x + y ) = log x + y + 2 ( x y + 1 ) \large x + y - 1 = \log_2{(x + y)} = \log_{x + y + 2}{(xy + 1)}

If the number of real solutions to the system of equations is n n , submit your answer as n + x + y + 1 n+x+y+1 .

-3 4 2 0 1 -1 -2 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 30, 2019

From

x + y 1 = log 2 ( x + y ) Since log b a = x a = b x 2 x + y 1 = x + y 2 x + y 2 = x + y 2 x + y x + y = 2 x + y = { 1 2 \begin{aligned} x+y - 1 & = \log_2 (x+y) & \small \color{#3D99F6} \text{Since } \log_b a = x \implies a = b^x \\ \implies 2^{x+y-1} & = x + y \\ \frac {2^{x+y}}2 & = x+y \\ \frac {2^{x+y}}{x+y} & = 2 \\ \implies x+y & = \begin{cases} 1 \\ 2 \end{cases} \end{aligned}

For x + y = 1 x+y=1 , then

log x + y + 2 ( x y + 1 ) = x + y 1 Since x + y = 1 log 3 ( x y + 1 ) = 0 x y + 1 = 3 0 = 1 Note that y = 1 x x ( 1 x ) = 0 \begin{aligned} \log_{x+y+2} (xy+1) & = x+y - 1 & \small \color{#3D99F6} \text{Since }x+y = 1 \\ \log_3 (xy+1) & = 0 \\ \implies xy + 1 & = 3^0 = 1 & \small \color{#3D99F6} \text{Note that }y = 1-x \\ x(1-x) & = 0 \end{aligned}

x = { 0 y = 1 1 y = 0 2 solutions \implies x = \begin{cases} 0 & \implies y = 1 \\ 1 & \implies y = 0 \end{cases} \implies \color{#3D99F6} \text{2 solutions}

For x + y = 2 x+y=2 , then

log x + y + 2 ( x y + 1 ) = x + y 1 Since x + y = 2 log 4 ( x y + 1 ) = 1 x y + 1 = 4 1 = 4 Note that y = 2 x x ( 2 x ) + 1 = 4 x 2 2 x + 3 = 0 No real solution. \begin{aligned} \log_{x+y+2} (xy+1) & = x+y - 1 & \small \color{#3D99F6} \text{Since }x+y = 2 \\ \log_4 (xy+1) & = 1 \\ \implies xy + 1 & = 4^1 = 4 & \small \color{#3D99F6} \text{Note that }y = 2-x \\ x(2-x) + 1 & = 4 \\ \implies x^2 - 2x + 3 & = 0 & \small \color{#D61F06} \text{No real solution.} \end{aligned}

Therefore, the number of real solutions n = 2 n=2 and n + x + y + 1 = 2 + 1 + 1 = 4 n+x+y+1 = 2+1+1 = \boxed 4 .

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...