A calculus problem by Nikola Alfredi

Calculus Level 1

lim n n sin ( π n ) = ? \lim_{n\to\infty} n \sin \left( \frac \pi n \right) = \ ?

π \sqrt \pi 2 π \sqrt \pi 1 π \frac{1}{\pi} π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 29, 2020

L = lim n n sin ( π n ) Let x = π n = lim x 0 π × sin x x = π \begin{aligned} L & = \lim_{n \to \infty} n \sin \left(\frac \pi n\right) & \small \blue{\text{Let }x = \frac \pi n} \\ & = \lim_{x \to 0} \pi \times \frac {\sin x}x \\ & = \boxed \pi \end{aligned}

L t n ( n sin π n ) = π × L t n sin π n π n = π Lt_{n\rightarrow \infty} (n\sin \dfrac{π}{n})=π\times Lt_{n\rightarrow \infty}\dfrac{\sin \dfrac{π}{n}}{\dfrac{π}{n}}=\boxed π

Nikola Alfredi
Jan 29, 2020

Solution : You can think of a regular n sided polygon circumscribed by a circle of radius 1 2 \frac{1}{2} units , then you try to find its perimeter P P :

Let the side length of the polygon be x x units

The central angle when you join the vertices of n-gon with the centre of the circle, would be θ = 2 π n \ \ \ \theta = \frac{2\pi}{n} ,

Then by using Sine-Rule :

x sin ( 2 π n ) = 1 2 sin ( π 2 π n ) \frac{x}{\sin (\frac{2\pi}{n})} = \frac{\frac {1}{2}}{\sin (\frac {\pi}{2} - \frac{\pi}{n})}

Also, sin ( 2 π n ) = 2 sin ( π n ) cos ( π n ) \ \ \sin (\frac{2\pi}{n}) = 2\sin (\frac{\pi}{n}) \cos (\frac{\pi}{n})\ \ And sin ( π 2 π n ) = cos ( π n ) \ \ \sin (\frac {\pi}{2} - \frac{\pi}{n}) = \cos (\frac{\pi}{n})

Thus x = 2 × 1 2 sin ( π n ) cos ( π n ) cos ( π n ) x \ = \frac{2\times \frac{1}{2} \sin (\frac{\pi}{n}) \cos (\frac{\pi}{n})}{\cos (\frac{\pi}{n})}

Hence x = sin ( π n ) x = \sin (\frac{\pi}{n}) \ \ Now, the perimeter would be n × x n\times x

So, P = n sin ( π n ) P = n\sin (\frac{\pi}{n})

Thus as lim n \lim_{n\rightarrow\infty}\ \ \ P 2 π r P \approx 2\pi r \ \ , here r = 1 2 r = \frac{1}{2}

Thus P π P \approx \pi

So N = l i m n n × sin ( π n ) π lim_{n\rightarrow\infty} \ \ n\times \sin (\frac{\pi}{n}) \rightarrow \pi \ \ Or N = π \pi

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...