That's a complex equation!

Geometry Level pending

( E ) : ( z 2 2 z ) cos 2 α + 1 = 0 (E): ({ z }^{ 2 }-2z)\cos ^{ 2 }{ \alpha +1=0 }

The equation ( E ) (E) admits 2 solutions U U and V V . If U × V = cos n α U\times V=\cos ^{ n } \alpha , find n n .

Bonus : Find the set of images of these solutions.

Clarification : z z is a complex number.

-2 -1 1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Harsh Khatri
Feb 7, 2016

( E ) : ( z 2 2 z + 1 ) cos 2 α + 1 cos 2 α = 0 (E) : (z^2 - 2z +1)\cos^2\alpha + 1 - \cos^2\alpha = 0

U = 1 + i tan α , V = 1 i tan α \displaystyle \Rightarrow U = 1 + i\tan\alpha, V = 1 - i\tan\alpha

U × V = 1 + tan 2 α = cos 2 α \displaystyle \Rightarrow U \times V = 1 + \tan^2\alpha = \cos^{-2}\alpha

n = 2 \displaystyle \Rightarrow \boxed{n = - 2}

I presume you meant 'set of conjugates' when you said 'set of images'. I'll proceed with that assumption.

U = 1 i tan α = V \displaystyle \overline{U} = 1 - i\tan\alpha = V

V = 1 + i tan α = U \displaystyle \overline{V} = 1 + i\tan\alpha = U

Therefore, set of conjugates of the solutions = { U , V } = { V , U } \displaystyle = \{\overline{U}, \overline{V}\} = \{V, U\}
which is the same as the set of solutions.

When I said set of images i meant the locus of the points, may be badly said :) But let U and V be the affixes of the points M and N M ( 1 , tan α ) N ( 1 , tan α ) s o t h e s e t o f p o i n t s o f t h e s o l u t i o n s i s t h e s t r a i g h t l i n e x = 1 s i n c e α ] π 2 , π 2 [ s o , t a n α ] , + [ M(1,\tan { \alpha )\quad } \\ N(1,-\tan { \alpha ) } \\ so\quad the\quad set\quad of\quad points\quad of\quad the\quad solutions\quad is\quad the\\ straight\quad line\quad x=1\quad since\quad \alpha \quad \in \quad ]\frac { -\pi }{ 2 } ,\frac { \pi }{ 2 } [\\ so,\quad tan\alpha \quad \in \quad ]-\infty ,+\infty [

Mohammad Hamdar - 5 years, 4 months ago

Log in to reply

I would like to discuss another method to find the locus.

We write U in polar form as:

U = sec α ( cos α + i sin α ) \displaystyle U = \sec\alpha ( \cos\alpha + i\sin\alpha)

U = 1 + tan 2 α e i α \displaystyle U = \sqrt{1+\tan^2\alpha} \cdot e^{i\alpha}

U = 1 + tan 2 α \displaystyle \Rightarrow |U| = \sqrt{1 + \tan^2\alpha}

Thus, we conclude that U , O ( 0 , 0 ) \displaystyle U, O(0,0) and P ( 1 , 0 ) \displaystyle P(1,0) always form a right-angled triangle such that U O P = α \displaystyle \angle UOP = \alpha .

Thus, P U \displaystyle PU is always perpendicular to real axis and so the locus of U \displaystyle U is the part of the line z = 1 \displaystyle z=1 above the real axis(including point P) .

Similarly, we conclude P V \displaystyle PV is always perpendicular to real axis and the locus of V \displaystyle V is the part of the line z = 1 \displaystyle z=1 below the real axis(including point P).

Thus, the combination of their loci is the line z = 1 \boxed{z=1} .

Or if plotted on the Cartesian plane, the locus is x = 1 \boxed{x=1} .

Harsh Khatri - 5 years, 4 months ago

Log in to reply

Yup a new method i saw there ! Thank you for sharing it .

Mohammad Hamdar - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...