That's a large sequence!

Algebra Level 5

Find the sum of the following series if x \left| x \right| <1 :-

1 ( 1 x ) ( 1 x 3 ) + x 2 ( 1 x 3 ) ( 1 x 5 ) + x 4 ( 1 x 5 ) ( 1 x 7 ) + \frac { 1 }{ (1-x)(1-{ x }^{ 3 }) } +\frac { { x }^{ 2 } }{ (1-{ x }^{ 3 })(1-{ x }^{ 5 }) } +\frac { { x }^{ 4 } }{ (1-{ x }^{ 5 })(1-{ x }^{ 7 }) } +\ldots

1 ( 1 + x ) ( 1 x ) 2 \frac { 1 }{ (1+x){ (1-x) }^{ 2 } } 1 ( 1 x ) ( 1 + x ) 2 \frac { 1 }{ (1-x){ (1+x) }^{ 2 } } 1 ( 1 + x ) ( 1 + x ) 2 \frac { 1 }{ (1+x){ (1+x) }^{ 2 } } 1 ( 1 x ) ( 1 x ) 2 \frac { 1 }{ (1-x){ (1-x) }^{ 2 } }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kartik Sharma
Jan 30, 2015

This is the sigma notation-

n = 1 ( x 2 n 2 ( 1 x 2 n + 1 ) ( 1 x 2 n 1 ) ) \sum _{ n=1 }^{ \infty }({ \frac { { x }^{ 2n-2 } }{ (1-{ x }^{ 2n+1 })(1-{ x }^{ 2n-1 }) } })

1 x 2 n = 1 ( x 2 n ( 1 x 2 n + 1 ) ( 1 x 2 n 1 ) ) \frac{1}{{x}^{2}}\sum_{n=1}^{\infty}({\frac{{x}^{2n}}{(1-{x}^{2n+1})(1-{x}^{2n-1})}})

Now we can split the term in the following way -

1 x 2 n + 1 1 + x 2 n 1 = x 2 n ( 1 x x ) 1 - {x}^{2n+1} - 1 + {x}^{2n-1} = {x}^{2n}(\frac{1}{x} - x)

1 x 2 n = 1 ( 1 x + 1 x 1 1 x 2 n 1 1 x + 1 x 1 1 x 2 n + 1 ) \frac{1}{{x}^{2}}\sum_{n=1}^{\infty}({\frac{1}{-x+\frac{1}{x}}\frac{1}{1-{x}^{2n-1}} - \frac{1}{-x+\frac{1}{x}}\frac{1}{1-{x}^{2n+1}}})

1 x ( 1 x 2 ) n = 1 ( 1 1 x 2 n 1 1 1 x 2 n + 1 ) \frac{1}{x(1-{x}^{2})}\sum_{n=1}^{\infty}({\frac{1}{1-{x}^{2n-1}} - \frac{1}{1-{x}^{2n+1}}})

Now, this is a telescoping series converging to 1 1 x \frac{1}{1-x}

And hence, the total sum converges to -

1 x ( 1 x 2 ) ( 1 x ) \frac{1}{x(1-{x}^{2})(1-x)}

1 x ( ( 1 x ) 2 ) ( 1 + x ) \frac{1}{x({(1-x)}^{2})(1+x)}

@Aditya Tiwari

Kartik Sharma - 6 years, 4 months ago

Log in to reply

I think this is the obvious method to do this question . Overrated problem according to me .

A Former Brilliant Member - 6 years, 4 months ago
Mudit Bansal
Jan 21, 2015

NOT A SOLID SOLUTION: I've just checked first term for x = 1 2 x=\frac { 1 }{ 2 } , it comes out to be 16 7 \frac { 16 }{ 7 } , hence, options A,C are rejected, also D becomes 8 for x = 1 2 x=\frac { 1 }{ 2 } , which is a very large value for this converging series.

1 ( 1 x ) 2 \dfrac{1}{(1-x)^2} is a common factor and all quantities are + tive. |x|<1 so its higher powers approach zero. So 1 ( 1 + x ) ( 1 x ) 2 \dfrac{1}{(1+x)*(1-x)^2} can only be the solution.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...