That's a lot of logging

Algebra Level 2

Let: a = ( l o g 2 3 ) ( l o g 3 4 ) ( l o g 4 5 ) . . . ( l o g 511 512 ) a=(log_{2}3)(log_{3}4)(log_{4}5)...(log_{511}512)

What is the value of a > 0 \sqrt{a}>0


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Priyatosh Sahoo
Apr 22, 2015

\log _{ 2 }{ 3 } =\frac { \log { 3 } }{ \log { 2 } }

Similarly, \log _{ 3 }{ 4 } =\frac { \log { 4 } }{ \log { 3 } }

\log _{ 511 }{ 512 } =\frac { \log { 512 } }{ \log { 511 } }

After multiplying all of them the result will be \log _{ 2 }{ 512 }

which is equal to 9

Therefore, a=9 \sqrt { 9 } =3

Tapas Mazumdar
Sep 28, 2016

a = ( log 2 3 ) ( log 3 4 ) ( log 4 5 ) ( log 511 512 ) = log 3 log 2 log 4 log 3 log 5 log 4 log 512 log 511 = log 512 log 2 = log 2 512 = 9 a = 9 = 3 \begin{aligned} a &= (\log_2 3)(\log_3 4)(\log_4 5)\cdots(\log_{511} 512) \\ & = \dfrac{\cancel{\log 3}}{\log 2} \cdot \dfrac{\cancel{\log 4}}{\cancel{\log 3}} \cdot \dfrac{\cancel{\log 5}}{\cancel{\log 4}} \cdots \dfrac{\log {512}}{\cancel{\log {511}}} \\ &= \dfrac{\log {512}}{\log 2} \\ &= \log_2 512 \\ &=9 \end{aligned} \\ \therefore \sqrt{a} = \sqrt{9} = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...