For recursive relation x n + 1 = 2 x n − 1 x n 2 + 1 , where n is a positive integer,
n → ∞ lim x n = { α β if x 1 > 2 1 if x 1 < 2 1
Find k = 0 ∑ ∞ ( α k − β k ) 2 x k for x = 0 . 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For those of you out there that may be wondering, the closed form for the generating function ∑ k = 0 ∞ F k 2 x k is ( x + 1 ) ( 1 − 3 x + x 2 ) x ( 1 − x ) :)
Problem Loading...
Note Loading...
Set Loading...
Let's check the extrema of x n + 1 = 2 x n − 1 x n 2 + 1 .
d x n d x n + 1 = ( 2 x n − 1 ) 2 2 x n ( 2 x n − 1 ) − 2 ( x n 2 + 1 ) = ( 2 x n − 1 ) 2 2 ( x n 2 − x n − 1 )
Implying that d x n d x n + 1 = 0 , when x n = 2 1 ± 5 = { φ 1 − φ , where φ is the gold ratio .
Since { x n > 0 x n < 0 for x 1 > 2 1 for x 1 < 2 1 ⟹ { x n ∈ [ φ , ∞ ) x n ∈ ( − ∞ , 1 − φ ] for x 1 > 2 1 for x 1 < 2 1 .
Since x n is bounded, let's assume n → ∞ lim x n converges to a limit ℓ , then
n → ∞ lim x n ⟹ ℓ ℓ 2 − ℓ − 1 ℓ = n → ∞ lim x n + 1 = n → ∞ lim 2 x n − 1 x n 2 + 1 = 2 ℓ − 1 ℓ 2 + 1 = 0 = { α = φ β = 1 − φ if x 1 > 2 1 if x 1 < 2 1 Since n → ∞ lim x n = ℓ
We get the same results by finding the extrema of x n + 1 with x n = φ , 1 − φ
⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ For x n = φ , For x n = 1 − φ , x n + 1 = 2 φ − 1 φ 2 + 1 = 2 φ − 1 φ 2 + φ 2 − φ = φ x n + 1 = 2 ( 1 − φ ) − 1 ( 1 − φ ) 2 + 1 = 2 φ − 1 2 φ − 1 − φ 2 − 1 = 1 − φ = x n = x n
This means that x n + 1 = x n at the extrema of α = φ and β = 1 − φ . That is x n converges to α and β .
Now consider k = 0 ∑ ∞ ( α k − β k ) 2 x k for x = 0 . 1 or
k = 0 ∑ ∞ 1 0 k ( φ k − ( 1 − φ ) k ) 2 = k = 1 ∑ ∞ 1 0 k 5 F k 2 ≈ 0 . 5 6 7 where F n is the n th Fibonacci number.
Reference: Fibonacci number