That's Not The Right Base

Algebra Level 3

log 7 i = i π ln ( A ) \large{\log_7 i = \frac{i \pi}{\ln(A)} }

Find A A .

Assume that we take the principal branch of the complex logarithm.

Notations:

  • i = 1 i = \sqrt{-1} denotes the imaginary unit.
  • ln ( ) \ln(\cdot) denotes the natural logarithm.


The answer is 49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

log 7 i = i π ln A ln i ln 7 = i π ln A ln e i π 2 ln 7 = i π ln A i π 2 ln 7 = i π ln A ln A = 2 ln 7 A = 49 \begin{aligned} \log_7 i & = \frac {i \pi} {\ln A} \\ \frac {\ln i} {\ln 7}&= \frac {i \pi} {\ln A} \\ \frac {\ln e^{i \frac \pi 2}} {\ln 7}&= \frac {i \pi} {\ln A} \\ \frac {i \pi } {2\ln 7}&= \frac {i \pi} {\ln A} \\ \ln A & = 2\ln 7 \\ \implies A&=\boxed {49}\end{aligned}

Md Zuhair
Oct 8, 2016

In this problem we are getting l o g 7 i = i π l n ( A ) \Large{log_7 i = \frac{i \pi}{ln(A)} } . Now we will get

l o g 7 i = l o g e e i π / l o g e A log_7 i = log_e e^{i \pi} / log_e A

Now it can be written as l o g 7 i = l o g A e i π log_7 i = log_A e^{i \pi}

Now we know e i π = 1 [ c o s π + i s i n π ] e^{i \pi} = -1 [ cos \pi + i sin \pi ] By De Moivre's Theorem.

Putting this value we will get l o g 7 i = l o g A 1 log_7 i = log_A -1

Now i = 7 l o g A ( 1 ) i = 7^{log_A (-1)} .

Hence i = ( 1 ) l o g A 7 i = (-1)^{log_A 7} .

We know i = ( 1 ) 1 / 2 i = (-1)^{1/2}

Or l o g A 7 = 1 / 2 log_A 7 = 1/2 or A 1 / 2 = 7 A^{1/2} = 7 or A = 49 \large \boxed {A =49}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...