{ x = 0 x . e 3 y = sin ( π y )
Let for j = 0 , 1 , 2 , … , n . And let S j be the area of the region bounded by the above curves and j ≤ y ≤ ( j + 1 ) . Find ∣ ∣ ∣ ∣ ∣ ln ( S 2 0 1 5 S 2 0 1 6 ) ∣ ∣ ∣ ∣ ∣ .
Notation : ∣ ⋅ ∣ denotes the absolute value function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
We can directly find S j = ∫ j j + 1 e − 3 y ∣ sin ( π y ) ∣ d y , and therefore S j + 1 = ∫ j + 1 j + 2 e − 3 y ∣ sin ( π y ) ∣ d y = ∫ j j + 1 e − 3 ( y + 1 ) ∣ sin ( π ( y + 1 ) ) ∣ d y = e − 3 ∫ j j + 1 e − 3 y ∣ sin ( π y ) ∣ d y = e − 3 S j
It follows that ∣ ∣ ∣ ∣ ln ( S 2 0 1 5 S 2 0 1 6 ) ∣ ∣ ∣ ∣ = ∣ ∣ ln ( e − 3 ) ∣ ∣ = ∣ − 3 ∣ = 3