That's Pretty Long!

Calculus Level 5

{ x = 0 x . e 3 y = sin ( π y ) \begin{cases} x=0 \\ \large x.e^{3y} = \sin(\pi y) \end{cases}

Let for j = 0 , 1 , 2 , , n j = 0,1,2 ,\ldots, n . And let S j S_j be the area of the region bounded by the above curves and j y ( j + 1 ) j \leq y \leq (j+1) . Find ln ( S 2016 S 2015 ) . \large \left | \ln \left (\frac{S_{2016}}{S_{2015}} \right) \right | .

Notation : | \cdot | denotes the absolute value function .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Jun 26, 2018

We can directly find S j = j j + 1 e 3 y sin ( π y ) d y , S_j = \int_j^{j+1} e^{-3y}|\sin(\pi y)|\,dy, and therefore S j + 1 = j + 1 j + 2 e 3 y sin ( π y ) d y = j j + 1 e 3 ( y + 1 ) sin ( π ( y + 1 ) ) d y = e 3 j j + 1 e 3 y sin ( π y ) d y = e 3 S j S_{j+1} = \int_{j+1}^{j+2} e^{-3y}|\sin(\pi y)|\,dy = \int_j^{j+1} e^{-3(y+1)}|\sin(\pi(y+1))|\,dy = e^{-3}\int_j^{j+1} e^{-3y}|\sin(\pi y)|\,dy = e^{-3}S_j

It follows that ln ( S 2016 S 2015 ) = ln ( e 3 ) = 3 = 3 \left|\ln\left(\frac{S_{2016}}{S_{2015}}\right)\right| = \left|\ln\left(e^{-3}\right)\right| = |-3| = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...