That's So Min!

Geometry Level pending

sin 2016 α + cos 2016 α \large \sin^{2016}\alpha + \cos^{2016}\alpha

Let α \alpha be a real number . If the minimum value of the expression above can be expressed as 2 n 2^n , find n n .


The answer is -1007.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Manuel Kahayon
May 27, 2016

Let s i n α = x sin \alpha = x and c o s α = y cos \alpha = y , satisfying x 2 + y 2 = 1 x^2+y^2 = 1 . We are then looking to minimize x 2016 + y 2016 x^{2016}+y^{2016} .

By Holder's inequality,

( ( 1 + 1 ) ( 1 + 1 ) ( 1 + 1 ) ( x 2016 + y 2016 ) ) 1 1008 x 2016 1008 + y 2016 1008 \large ((1+1)(1+1) \cdots (1+1)(x^{2016}+y^{2016}))^{\frac{1}{1008}} \geq x^\frac{2016}{1008}+y^\frac{2016}{1008}

With 1007 1007 1 + 1 1+1 's in the LHS.

Simplifying gives us 2 1007 ( x 2016 + y 2016 ) ( x 2 + y 2 ) 1008 = 1 2^{1007}(x^{2016}+y^{2016}) \geq (x^2+y^2)^{1008} = 1 (since x 2 + y 2 = 1 x^2+y^2 = 1 )

Giving us x 2016 + y 2016 1 2 1007 = 2 1007 x^{2016}+y^{2016} \geq \frac{1}{2^{1007}} = 2^{-1007} .

So, our minimum value of s i n 2016 α + c o s 2016 α = x 2016 + y 2016 sin^{2016}\alpha + cos^{2016}\alpha = x^{2016}+y^{2016} is 2 1007 2^{-1007} . We then get our answer as 1007 \boxed{-1007} .

What's Holder's Inequality? :))

Ralph Macarasig - 5 years ago

Log in to reply

Grant Bulaong
May 27, 2016

First, note that s i n 2016 α sin^{2016} \alpha and c o s 2016 α cos^{2016} \alpha are non-negative. For cases where either s i n α = 0 sin \alpha=0 or c o s α = 0 cos \alpha=0 , we have s i n 2016 α + c o s 2016 α = 1 sin^{2016} \alpha + cos^{2016} \alpha =1 . For positive values, we apply AM-GM inequality(?):

s i n 2016 α + c o s 2016 α 2 s i n 1008 α c o s 1008 α sin^{2016} \alpha + cos^{2016} \alpha \geq 2 \cdot sin^{1008} \alpha \cdot cos^{1008} \alpha

We take the equality case for minimum value. This gives us s i n α = c o s α = 1 2 sin\alpha=cos\alpha=\frac{1}{\sqrt{2}} . By substitution, we have s i n 2016 α + c o s 2016 α = 1 2 1007 sin^{2016} \alpha + cos^{2016} \alpha = \frac{1}{2^{1007}} . Hence n = 1007 \boxed{n=-1007} .

Moderator note:

Note that the minimum of 2 s i n 1008 α c o s 1008 α 2 \cdot sin^{1008} \alpha \cdot cos^{1008} \alpha is actually 0, and occus when sin α = 0 \sin \alpha = 0 or cos α = 0 \cos \alpha = 0 . You have not demonstated yet that s i n 2016 α + c o s 2016 α 2 × 1 2 1 008 sin^{2016} \alpha + cos^{2016} \alpha \geq 2 \times \frac{1}{ 2^1008} .

There is no reason why the minimum value of the RHS must occur at the equality case.

Note that the minimum of 2 s i n 1008 α c o s 1008 α 2 \cdot sin^{1008} \alpha \cdot cos^{1008} \alpha is actually 0, and occus when sin α = 0 \sin \alpha = 0 or cos α = 0 \cos \alpha = 0 . You have not demonstated yet that s i n 2016 α + c o s 2016 α 2 × 1 2 1 008 sin^{2016} \alpha + cos^{2016} \alpha \geq 2 \times \frac{1}{ 2^1008} .

There is no reason why the minimum​ value of the RHS must occur at the equality case.

Calvin Lin Staff - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...