That's too long!

Algebra Level 3

( 27 + 756 ) 1 3 + ( 27 756 ) 1 3 = ? \large \left ( 27+\sqrt{756} \right )^{\frac{1}{3}}+\left ( 27-\sqrt{756} \right )^{\frac{1}{3}} = \, ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 17, 2016

Let x = ( 27 + 756 ) 1 3 + ( 27 756 ) 1 3 x = \left(27+\sqrt{756}\right)^\frac 13 + \left(27-\sqrt{756}\right)^\frac 13 . Then we have:

x 3 = ( ( 27 + 756 ) 1 3 + ( 27 756 ) 1 3 ) 3 = 27 + 756 + 3 ( 27 + 756 ) 2 3 ( 27 756 ) 1 3 + 3 ( 27 + 756 ) 1 3 ( 27 756 ) 2 3 + 27 756 = 54 + 3 ( 2 7 2 756 ) 1 3 ( ( 27 + 756 ) 1 3 + ( 27 756 ) 1 3 ) = 54 + 3 ( 27 ) 1 3 x = 54 9 x \begin{aligned} x^3 & = \left( \left(27+\sqrt{756}\right)^\frac 13 + \left(27-\sqrt{756}\right)^\frac 13 \right)^3 \\ & = \color{#3D99F6}{27+\sqrt{756}} + 3 \left(27+\sqrt{756}\right)^\frac 23 \left(27-\sqrt{756}\right)^\frac 13 + 3 \left(27+\sqrt{756}\right)^\frac 13 \left(27-\sqrt{756}\right)^\frac 23 + \color{#3D99F6}{27-\sqrt{756}} \\ & = \color{#3D99F6}{54} + 3 \left(27^2 - 756 \right)^\frac 13 \left( \left(27+\sqrt{756} \right)^\frac 13 + \left(27-\sqrt{756}\right)^\frac 13 \right) \\ & = 54 + 3 \left(- 27 \right)^\frac 13 x \\ & = 54 - 9x \end{aligned}

x 3 + 9 x 54 = 0 ( x 3 ) ( x 2 + 3 x + 18 ) = 0 x = 3 \begin{aligned} \implies x^3 + 9x - 54 & = 0 \\ (x-3)(x^2+3x+18) & = 0 \\ \implies x & = \boxed{3} \end{aligned}

Note that x 2 + 3 x + 18 = 0 x^2 + 3x + 18 = 0 has no real root.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...