That's too much!

Calculus Level 4

lim n ( 200 9 2010 n + 201 0 2009 n ) 1 / n \lim_{n\to\infty} \left(2009^{2010n} + 2010^{2009n} \right)^{1/n}

The limit above can be expressed as a b a^b , where a a and b b are natural numbers . Find a b |a-b| .

Notation: | \cdot| denotes the absolute value function .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 21, 2020

L = lim n ( 200 9 2010 n + 201 0 2009 n ) 1 n = lim n exp ( ln ( 200 9 2010 n + 201 0 2009 n ) 1 n ) where exp ( x ) = e x = exp ( lim n ln ( 200 9 2010 n + 201 0 2009 n ) n ) = exp ( lim n ln ( 200 9 2010 n ( 1 + 201 0 2009 n 200 9 2010 n ) ) n ) = exp ( lim n ln ( 200 9 2010 n ) n + lim n ln ( 1 + 201 0 2009 n 200 9 2010 n ) n ) = exp ( lim n 2010 n ln ( 2009 ) n + 0 ) = exp ( 2010 ln ( 2009 ) ) = 200 9 2010 \begin{aligned} L & = \lim_{n \to \infty} \left(2009^{2010n}+2010^{2009n}\right)^\frac 1n \\ & = \lim_{n \to \infty} \exp \left(\ln \left(2009^{2010n}+2010^{2009n}\right)^\frac 1n \right) & \small \blue{\text{where }\exp (x) = e^x} \\ & = \exp \left(\lim_{n \to \infty} \frac {\ln \left(2009^{2010n}+2010^{2009n}\right)}n \right) \\ & = \exp \left(\lim_{n \to \infty} \frac {\ln \left(2009^{2010n}\left(1+\frac {2010^{2009n}}{2009^{2010n}}\right)\right)}n \right) \\ & = \exp \left(\lim_{n \to \infty} \frac {\ln \left(2009^{2010n}\right)}n + \lim_{n \to \infty} \frac {\ln \left(1+\frac {2010^{2009n}}{2009^{2010n}}\right)}n \right) \\ & = \exp \left(\lim_{n \to \infty} \frac {2010n\ln \left(2009\right)}n + 0 \right) \\ & = \exp \left(2010\ln \left(2009\right) \right) \\ & = 2009^{2010} \end{aligned}

Therefore a b = 2009 2010 = 1 |a-b| = |2009-2010| = \boxed 1 .

Sabhrant Sachan
Mar 21, 2020

Consider the function f : R > 0 R > 0 f: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0} defined as f ( x ) = x 1 x f(x) = x^{\frac{1}{x}} . By calculating the first derivative of f f we see that this function is strictly decreasing for x > e x>e , this implies f ( 2009 ) > f ( 2010 ) f(2009)>f(2010) and thus 200 9 2010 > 201 0 2009 2009^{2010} > 2010^{2009} . This result will be helpfull for us in evaluating the given limit. For convinience, let a = 200 9 2010 a = 2009^{2010} and b = 201 0 2009 b = 2010^{2009} , we know a > b a > b . Now consider the limit lim x ( 1 + c x ) 1 x = e lim ln ( 1 + c x ) x \lim_{x \to \infty} \left( 1+c^x \right)^{\frac{1}{x}} = e^{\lim \frac{\ln{(1+c^x)}}{x}} , assuming c > 1 c >1 , we have \frac{\infty}{\infty} form, using LH rule we get lim x ( 1 + c x ) 1 x = c \lim_{x \to \infty} \left( 1+c^x \right)^{\frac{1}{x}} = c . Now we are ready to solve our given limit. lim n ( a n + b n ) 1 / n \lim_{n \to \infty} \left( a^n+b^n\right)^{1/n} = b lim n ( 1 + ( a b ) n ) 1 / n = a = b\lim_{n \to \infty} \left( 1+(\frac{a}{b})^n\right)^{1/n} = a . Thus the answer is 200 9 2010 2009^{2010} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...