The 100-function

Algebra Level 2

Let Hundred \text{Hundred} be a function satisfying Hundred ( x ) = 100 x 100 \text{Hundred}(x) = 100x^{100} . Evaluate

Hundred ( 12345654321 ) + Hundred ( 12345654321 ) Hundred ( 2 1 / 100 12345654321 ) . \text{Hundred}(12345654321) + \text{Hundred}(12345654321) - \text{Hundred}(2^{1/100} 12345654321) .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zee Ell
Aug 16, 2016

Let a = 12345654321 and the function 100 ( x ) = f 100 ( x ) . \text {Let } a = 12345654321 \text { and the function } 100(x)= f_{100}(x) \ .

Now, our expression can be written as:

f 100 ( a ) + f 100 ( a ) f 100 ( 2 1 100 a ) = f_{100}(a) +f_{100}(-a) - f_{100}(2^{ \frac {1}{100}}a) =

= 100 × a 100 + 100 × ( a ) 100 100 × ( 2 1 100 a ) 100 = = 100 × a^{100} + 100 × (-a)^{100} - 100 × (2^{ \frac {1}{100}}a)^{100} =

= 100 a 100 + 100 a 100 100 × 2 a 100 = 0 =100a^{100} + 100a^{100} - 100 × 2a^{100} = \boxed {0}

Very right solution:) I dont understand why every one is not attempting this much simple problem!

Anandmay Patel - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...