The 2 seems out of place

Calculus Level 4

0 π 2 x ln ( sin 2 x ) d x \displaystyle\int_0^{\frac{\pi}{2}}x\ln(\sin 2x)\text{ }dx

The integral above is equal to π A ln B C , \dfrac{-\pi^A\ln B}{C}, where A A , B B , and C C are positive integers and B B is minimized. Find A + B + C . A+B+C.


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tunk-Fey Ariawan
Oct 24, 2014

0 π 2 x ln ( sin 2 x ) d x = 0 π 2 x ln ( 2 sin x cos x ) d x = ln 2 0 π 2 x d x + 0 π 2 x ln ( sin x ) d x + 0 π 2 x ln ( cos x ) d x x x π 2 = π 2 8 ln 2 + 0 π 2 x ln ( sin x ) d x + 0 π 2 ( π 2 x ) ln ( sin x ) d x = π 2 8 ln 2 + π 2 0 π 2 ln ( sin x ) d x use symmetry argument or ask Uncle Google 😂 = π 2 8 ln 2 + π 2 [ π 2 ln 2 ] = π 2 8 ln 2 \begin{aligned} \int_0^{\Large\frac{\pi}{2}} x\ln(\sin 2x)\ dx&=\int_0^{\Large\frac{\pi}{2}} x\ln(2\sin x\cos x)\ dx\\ &=\ln 2\int_0^{\Large\frac{\pi}{2}} x\ dx+\int_0^{\Large\frac{\pi}{2}} x\ln(\sin x)\ dx+\underbrace{\int_0^{\Large\frac{\pi}{2}} x\ln(\cos x)\ dx}_{\color{#D61F06}{\Large x\,\mapsto\,x-\frac{\pi}{2}}}\\ &=\frac{\pi^2}{8}\ln2+\int_0^{\Large\frac{\pi}{2}} x\ln(\sin x)\ dx+\int_0^{\Large\frac{\pi}{2}} \left(\frac{\pi}{2}-x\right)\ln(\sin x)\ dx\\ &=\frac{\pi^2}{8}\ln2+\frac{\pi}{2}\underbrace{\int_0^{\Large\frac{\pi}{2}} \ln(\sin x)\ dx}_{\color{#D61F06}{\Large \text{use symmetry argument}}}\ \Rightarrow\ \color{#D61F06}{\text{ or ask Uncle Google 😂}}\\[12pt] &=\frac{\pi^2}{8}\ln2+\frac{\pi}{2}\left[-\frac{\pi}{2}\ln2\right]\\ &=\color{#3D99F6}{-\frac{\pi^2}{8}\ln2} \end{aligned}

Nice! You always have such clean approaches to these calculus manipulations.

Great use of Latex! FYI, emoji doesn't translate well in Latex.

Calvin Lin Staff - 6 years, 7 months ago

Can you please explain what is " symmetry argument"??

Hasan Kassim - 6 years, 7 months ago

Brilliant as usual! +1

Honestly, I really admire you. I hope one day I can be level with you, Cleo, achille hui, sos440, Random Variable, Olivier Oloa, robjohn♦, Omran Kouba, and other Great Integrators in Math SE. ٩(˘◡˘)۶

Anastasiya Romanova - 6 years, 7 months ago

Let the integral be denoted by I I . I = 0 π 2 x ln ( sin 2 x ) d x I = \displaystyle \int_{0}^{\frac{\pi}{2}} x\ln(\sin 2x) dx

s i n 2 x = s i n ( π 2 x ) = sin ( 2 ( π 2 x ) ) sin2x = sin(\pi - 2x) = \sin(2(\dfrac{\pi}{2} - x))

Hence,

I = 0 π 2 ( π 2 x ) ln ( sin 2 x ) d x I = \displaystyle \int_{0}^{\frac{\pi}{2}} \left(\dfrac{\pi}{2} - x\right) \ln(\sin 2x) dx

The above step was achieved by using the property:

0 a f ( x ) d x = 0 a f ( a x ) d x \displaystyle \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx

I = π 2 0 π 2 ln ( sin 2 x ) d x I I = \displaystyle \dfrac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \ln(\sin 2x) dx - I

2 I = π 2 0 π 2 ( ln 2 + ln ( sin x ) + ln ( cos x ) ) d x 2I = \displaystyle \dfrac{\pi}{2} \int_{0}^{\frac{\pi}{2}} ( \ln 2 + \ln (\sin x) + \ln (\cos x) ) dx

2 I = π 2 ( π 2 ln 2 + π 2 ln 2 π 2 ) 2I = \displaystyle \dfrac{\pi}{2} \left( \dfrac{\pi}{2} \ln 2 + \dfrac{-\pi}{2} \ln 2 - \dfrac{-\pi}{2} \right)

2 I = π 2 4 ln 2 π 2 4 ln 2 π 2 4 ln 2 2I = \displaystyle \dfrac{\pi^2}{4} \ln 2 - \dfrac{\pi^2}{4} \ln 2 -\dfrac{\pi^2}{4} \ln 2

2 I = π 2 ln 2 4 I = π 2 ln 2 8 \Rightarrow 2I = \dfrac{-\pi^2 \ln 2}{4} \Rightarrow I = \dfrac{-\pi^2 \ln 2}{8}


Note - 0 π 2 ln ( sin x ) = 0 π 2 ln ( cos x ) = π 2 ln 2 \int_{0}^{\frac{\pi}{2}} \ln (\sin x) = \int_{0}^{\frac{\pi}{2}} \ln (\cos x) = \dfrac{-\pi}{2} \ln 2

I consider this to be a problem whose derivation can be done easily.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...