The 3 cute roots

Algebra Level 4

Given that a , b a,b and c c are the roots of the equation i z 3 + 6 z 2 11 i z 6 = 0. iz^ 3+6z^2 - 11iz - 6=0.

Find the value of a 2 + b 2 + c 2 a^2+b^2+c^2 .


The answer is -14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

D i v i d i n g t h e e q u a t i o n b y i , z 3 6 i z 2 11 z + 6 i = 0. B y V i e t a s F o r m u l a , a + b + c = i 6 , a b + b c + c a = 11. ( a + b + c ) 2 = 36 = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) = a 2 + b 2 + c 2 + 2 ( 11 ) . 36 + 22 = 14 = a 2 + b 2 + c 2 Dividing \ the \ equation\ by\ \ i,\ \ z^3-6iz^2-11z+6i=0.\\ By\ Vieta's\ Formula,\ a+b+c=i6,\ \ ab+bc+ca=-11.\\ \therefore\ (a+b+c)^2=-36=a^2+b^2+c^2+2(ab+bc+ca)=a^2+b^2+c^2+2(- 11).\\ \implies\ -36+22={\Large\ \color{#D61F06}{-14}}=a^2+b^2+c^2\\ \ \ \ \\ .

OR

D i v i d i n g t h e e q u a t i o n b y i , f ( z ) = z 3 6 i z 2 11 z + 6 i = 0. B y V i e t a s F o r m u l a , a + b + c = i 6. a b c = 6 i . f ( i ) = 0 a = i . b u t a b c = 6 i . b c = 6. t r y b = 2 i , c = 3 i . f ( 2 i ) = 0 , a n d f ( 3 i ) = 0. a 2 + b 2 + c 2 = 1 4 9 = 14. I f t r y h a d f a i l e d n e x t a l t e r n a t i v e w a s b = 2 , c = 3 o r b = 2 , c = 3. Dividing \ the \ equation\ by\ \ i,\ \ f(z)= z^3-6iz^2-11z+6i=0.\\ By\ Vieta's\ Formula,\ a+b+c=i6.\ \ abc = - 6i.\\ f(i)=0 \ \therefore a=i.\ \ but\ \ abc= - 6i.\\ \therefore\ bc=-6.\ \ \implies\ try \ b=2i,\ \ c=3i.\\ f(2i)=0,\ \ and\ \ f(3i)=0.\\ \therefore\ \ a^2+b^2+c^2=-1 - 4 - 9=-14.\\ If \ try\ had\ failed\ next\ alternative\ was\ b=-2,\ c=3\ \ \ or\\ b=2,\ c=-3.

Mohammad Hamdar
Apr 4, 2016

i ( z a ) ( z b ) ( z c ) = P ( x ) = i z 3 + 6 z 2 11 i z 6 i a b c = P ( 0 ) = 6.... a b c = 6 i L e t d b e t h e c o m m o n d i f f e r e n c e o f t h e A P , a + b + c = 6 i c = a + 2 d b = a + d 3 a + 3 d = 6 i s o , a = 2 i d b = 2 i s o , c = 4 i a . . . . a ( 2 i ) ( 4 i a ) = 6 i 2 i a 2 8 a + 6 i = 0 Δ = 64 48 = 16 a = 8 + 4 4 i = 3 i o r a = 8 4 4 i = i T a k e a = i s o c = 3 i a n d b = 2 i ( i t s a n A P o f c o m m o n d i f f e r n c e = d = i ) a 2 + b 2 + c 2 = 1 4 9 = 14. i(z-a)(z-b)(z-c)=P(x)=i{ z }^{ 3 }+6{ z }^{ 2 }-11iz-6\\ -iabc=P(0)=-6....\quad abc=-6i\\ Let\quad d\quad be\quad the\quad common\quad difference\quad of\quad the\quad AP,\\ a+b+c=6i\quad \quad \quad \quad c=a+2d\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad b=a+d\\ 3a+3d=6i\quad so,\quad a=2i-d\Longrightarrow \quad b=2i\\ so,\quad c=4i-a\quad ....\quad a(2i)(4i-a)=-6i\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad -2i{ a }^{ 2 }-8a+6i=0\\ \Delta =64-48=16\\ a=\frac { 8+4 }{ -4i } =3i\quad or\quad a=\frac { 8-4 }{ -4i } =i\\ Take\quad a=i\quad so\quad c=3i\quad and\quad b=2i\\ (it's\quad an\quad AP\quad of\quad common\quad differnce=d=i)\\ \\ \\ { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }=-1-4-9=-14.\\ \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...