The 3 variable square and product

Algebra Level 3

{ x 2 y z = 37 y 2 x z = 1 z 2 x y = 35 \large { \begin{cases} {x^2-yz=37 } \\ {y^2- xz = 1 } \\ {z^2-xy=-35 } \end{cases} }

If x , y x,y and z z are positive numbers that satisfy the system of equations above, find the value of 10000 x + 100 y + z 10000x + 100y + z .


The answer is 131211.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Let x = y + a x = y + a and z = y + b z = y + b for some real a , b . a,b. The given equations then become

  • (i) ( y + a ) 2 y ( y + b ) = 37 ( 2 a b ) y = 37 a 2 , (y + a)^{2} - y(y + b) = 37 \Longrightarrow (2a - b)y = 37 - a^{2},

  • (ii) y 2 ( y + a ) ( y + b ) = 1 ( a + b ) y = 1 + a b y^{2} - (y + a)(y + b) = 1 \Longrightarrow -(a + b)y = 1 + ab and

  • (iii) ( y + b ) 2 ( y + a ) y = 35 ( 2 b a ) y = 35 b 2 . (y + b)^{2} - (y + a)y = -35 \Longrightarrow (2b - a)y = -35 - b^{2}.

Adding these equations together yields that

0 = 3 ( a 2 a b + b 2 ) a 2 a b + b 2 = 3 , 0 = 3 - (a^{2} - ab + b^{2}) \Longrightarrow a^{2} - ab + b^{2} = 3, (iv).

Now going back to the original equations, when we subtract the second equation from the first we find that

x 2 y 2 y z + x z = 37 1 ( x y ) ( x + y + z ) = 36. x^{2} - y^{2} - yz + xz = 37 - 1 \Longrightarrow (x - y)(x + y + z) = 36.

Now since we are only looking for positive solutions, we must have x > y . x \gt y. Similarly, subtracting the third equation from the second, we find that

y 2 z 2 x z + x y = 36 ( y z ) ( x + y + z ) = 36. y^{2} - z^{2} - xz + xy = 36 \Longrightarrow (y - z)(x + y + z) = 36.

Again, since we are looking for only positive solutions, we must have y > z . y \gt z. Now comparing these last two results, we see that x y = y z , x - y = y - z, implying that a = b . a = -b. Plugging this result ito equation (iv) yields that

a 2 + a 2 + a 2 = 3 a 2 = 1 a = 1 , a^{2} + a^{2} + a^{2} = 3 \Longrightarrow a^{2} = 1 \Longrightarrow a = 1,

since a = x y > 0. a = x - y \gt 0. This in turn gives b = 1. b = -1. Plugging these results into equation (i) yields that

3 y = 37 1 y = 12 , 3y = 37 - 1 \Longrightarrow y = 12, and so x = 13 , z = 11. x = 13, z = 11.

Thus 10000 x + 100 y + z = 10000 13 + 100 12 + 11 = 131211 . 10000x + 100y + z = 10000*13 + 100*12 + 11 = \boxed{131211}.

x 2 x^{2} - y z yz = 37 37

y 2 y^{2} - z x zx = 1 1

z 2 z^{2} - x y xy = 35 -35

x 2 x^{2} - y z yz + z 2 z^{2} - x y xy = 2 2 = 2 y 2 2y^{2} - 2 z x 2zx

x 2 x^{2} + z 2 z^{2} + 2 z x 2zx = y 2 y^{2} + y 2 y^{2} + y z yz + x y xy

( x + z ) 2 (x+z)^{2} - y 2 y^{2} = y 2 y^{2} + y z yz + x y xy

( x + y + z ) x+y+z) ( x y + z ) x-y+z) = y y ( x + y + z ) (x+y+z)

y y =( x y + z ) x-y+z)

2 y 2y = x + z x+z

Evaluating in Original Eq.3

We get

x z x-z = 2 2

x z x-z = 2 -2

Evaluating both the Equations in Original Eq.1

We get

x x = 13 13

y y = 12 12

z z = 11 11

When x z x-z = 2 2

And when x z x-z = 2 -2

x x = 13 -13

y y = 12 -12

z z = 11 -11

Since x , y , x , y , and z z are positive integers it cannot be negative hence it is 13 , 12 and 11 respectively

Sam Sung - 5 years, 10 months ago

Log in to reply

Better than conventional

Uday Satla - 5 years, 7 months ago
Vishrant Goyal
Aug 6, 2015

See the second equation which can be written as:
y 2 1 = x z y^{2} - 1 = xz
= > ( y + 1 ) ( y 1 ) = x z => (y+1)(y-1) = xz
comparing LHS and RHS:
x = ( y + 1 ) x = (y+1) and z = ( y 1 ) z = (y-1)
Use this result in any of the eq. 1 or 3 to get a quadratic eq. and solve for y.
eg. In eq.1, we get:
( y + 1 ) 2 y ( y 1 ) = 37 (y+1)^{2} - y(y-1) = 37
= > y = 12 => y = 12
So,
x = 13 , y = 12 , z = 11 x = 13, y = 12, z = 11



Yours is the best and most simplest solution!

jake roosenbloom - 5 years, 5 months ago

Nice tactics I like it very much

Ankit Roy - 5 years, 5 months ago

Excuse me, but how are you certain that x = y + 1 x=y+1 and z = y 1 z=y-1 ? Another possibility could be that 1 = y 1 1=y-1 and x z = y + 1 xz=y+1 . May someone explain why the other possibility does not need to be considered?

John Frank - 4 years, 10 months ago

4x3=2x6 Comparing LHS RHS: 4=2 and 3=6 😂

Valentin Eni - 4 years, 11 months ago

Log in to reply

This does not work when you have exact values, ie. in arithmetic. But, algebra is a representation. If there are two factors on LHS and RHS, if they are equal, equation will always hold true. So, maybe 4x3 not equals 2x6, but 4x3 will always be equal to 4x3. So, if axb=6x8, a=6 and b=8 will hold true. This may (or may not) hold true for other values of a and b, but, a=6 and b=8 will hold true.

Vishrant Goyal - 4 years, 11 months ago
Cleres Cupertino
Aug 3, 2015

{ x 2 y z = 37 y 2 x z = 1 z 2 x y = 35 Summing all equations x 2 + y 2 + z 2 x y x z y z = 3 { \begin{cases} {x^2-yz=37} \\ {y^2-xz=1} \\ {z^2-xy=-35} \end{cases} } \stackrel{\small \mbox{Summing all equations}}{\huge \Longrightarrow} x^2+y^2+z^2-xy-xz-yz=3

2 x 2 + 2 y 2 + 2 z 2 2 x y 2 x z 2 y z = 6 \Rightarrow 2x^2+2y^2+2z^2-2xy-2xz-2yz=6

( x y ) 2 + ( x z ) 2 + ( y z ) 2 = 6 \Rightarrow (x-y)^2+(x-z)^2+(y-z)^2=6

Perceive that y z = y x + x z y-z = y-x+x-z , so let´s do:

{ x y = a x z = b y z = b a { \begin{cases} {x-y=a} \\ {x-z=b} \\ {y-z=b-a} \end{cases} }

\Rightarrow

{ x y = a x = a + y x z = b z = a b + y y z = b a y ( a b + y ) = b a b a = b a { \begin{cases} {x-y=a \Leftrightarrow x=a+y} \\ {x-z=b \Leftrightarrow z=a-b+y} \\ {y-z=b-a \Leftrightarrow y-(a-b+y)=b-a \Leftrightarrow b-a=b-a} \end{cases} }

That shows us that x x and z z are in function of y y .

In fact, y 2 x z = 1 x z = y 2 1 x z = ( y + 1 ) ( y 1 ) y^2-xz=1 \Leftrightarrow xz=y^2-1 \Leftrightarrow xz=(y+1)(y-1)

If it was x = y 1 , z = y + 1 x=y-1, z=y+1 ,

( y 1 ) 2 y ( y + 1 ) = 37 y 2 2 y + 1 y 2 y = 37 (y-1)^2-y(y+1)=37 \Leftrightarrow y^2-2y+1-y^2-y=37

3 y = 36 y = 12 \Leftrightarrow -3y=36 \Leftrightarrow y=-12

This is not possible because y > 0 y>0 .

So,

{ x = y + 1 z = y 1 { \begin{cases} {x=y+1} \\ {z=y-1} \end{cases} }

Thus,

( y + 1 ) 2 y ( y 1 ) = 37 y 2 + 2 y + 1 y 2 + y = 37 (y+1)^2-y(y-1)=37 \Leftrightarrow y^2+2y+1-y^2+y=37

3 y = 36 y = 12 x = 13 z = 11 \Leftrightarrow 3y=36 \Leftrightarrow \boxed{y=12} \Leftrightarrow \boxed{x=13} \Leftrightarrow \boxed{z=11}

Therefore,

10000 x + 100 y + z = 10000.13 + 100.12 + 11 = 131211 10000x+100y+z=10000.13+100.12+11=\boxed{\boxed{131211}}

Notes :

1 ) 1) a = 1 , b = 2 ; a=1, b=2;

2 ) 2) ( y 1 ) 2 y ( y + 1 ) 2 = 35 y 2 2 y + 1 y 2 y = 35 (y-1)^2-y(y+1)^2=-35 \Leftrightarrow y^2-2y+1-y^2-y=-35

3 y = 36 y = 12 ; \Leftrightarrow -3y=-36 \Leftrightarrow y=12;

3 ) 3) y 2 ( y + 1 ) ( y 1 ) = 1 y 2 y 2 + 1 = 1. y^2-(y+1)(y-1)=1 \Leftrightarrow y^2-y^2+1=1.

Advay Pal
Aug 3, 2015

Subtract equation 1 and 2

(x-y)(x+y+z)= 36 (4)

Similarly, subtract equation 2 and 3

(y-z)(x+y+z)=36 (5)

Divide 4 and 5, x-y=y-z, hence x y and z are in AP

x= y-d, z=y+d, (where d =common difference)

So equation 4 becomes, yd= -12. As y is positive, d has to be negative

Substitute the value of x y and z in equation 1 and replace yd by -12, solve to get d =-1.

Hence, x=13, y=12, z=11

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...