May be easy to guess,but hard to prove^_^

There exists C R + \large C_{\in R^{+}} such that n Z + \large\forall n\in Z^{+} holds the following inequality:

( n , n 2 ) < C 1 4 n \large (n,\lfloor n\sqrt{2} \rfloor ) < C^{\frac{1}{4}} \sqrt{n} .

Determine the minimun of C \large C .

Notation: Here ( a , b ) (a,b) stands for the greatest commom divisor of two integers a , b a,b . And x \lfloor x \rfloor stands for the greatest integer that no larger than a real number x x .


The answer is 8.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Haosen Chen
Feb 22, 2018

Notation: Here ( a , b ) (a,b) stands for the greatest commom divisor of two integers . And x \lfloor x \rfloor stands for the greatest integer that no larger than a real number x x .

The answer is 8 and the following proof consists of two parts, Part1showes 8 is ok ,Part2 showes any postive real numbers less than 8 will fail the inequality for some particular n Z + n_{\in Z^{+}} using Pell's Equation .(See here: 1.[https://brilliant.org/wiki/quadratic-diophantine-equations-pells-equation/) 2.[https://en.wikipedia.org/wiki/Pell%27s_equation)

Part1. n Z + \large\forall n\in Z^{+} ,we have ( n , n 2 ) < 8 1 4 n \large(n,\lfloor n\sqrt{2} \rfloor)<8^{\frac{1}{4}}\sqrt{n} .

Since ( n 2 ) 2 = 2 n 2 (n\sqrt{2})^{2}=2n^{2} is square-free,there exists a Z + a\in Z^{+} such that a 2 < 2 n 2 < ( a + 1 ) 2 a^{2}<2n^{2}<(a+1)^{2} .And now n 2 = a \lfloor n\sqrt{2} \rfloor =a .

Let d = ( n , n 2 ) d=(n,\lfloor n\sqrt{2} \rfloor) ,then d 2 n 2 , d 2 a 2 d^{2}|n^{2}, d^{2}|a^{2} .So d 2 ( 2 n 2 a 2 ) > 0 d^{2}|(2n^{2}-a^{2})_{>0} ,which gives us an inequality: d 2 2 n 2 a 2 d^{2}\le 2n^{2}-a^{2} ( ( a + 1 ) 2 1 ) a 2 = 2 a < 2 2 n \le ((a+1)^{2}-1)-a^{2}=2a<2\sqrt{2}n .Thus, d = ( n , n 2 ) < 8 1 4 n d=(n,\lfloor n\sqrt{2} \rfloor)<8^{\frac{1}{4}}\sqrt{n} .

Part2. 0 < δ < 8 , n Z + \large\forall 0<\delta <8,\exists n\in Z^{+} : \large: ( n , n 2 ) > ( 8 δ ) 1 4 n \large(n,\lfloor n\sqrt{2} \rfloor)>(8-\delta)^{\frac{1}{4}}\sqrt{n} .

Let us consider this Negative Pell Equation: y 2 2 x 2 = 1 y^{2}-2x^{2}=-1 .It has infinitely many distinct solutions based on the obvious solution ( 1 , 1 ) (1,1) .

Now we can take one of its solutions, say ( x , y ) (x,y) , of which x > 4 δ + 1 x>\lfloor \sqrt{\frac{4}{\delta}} \rfloor +1 . Then 4 y 2 + 4 = 8 x 2 > ( 8 δ ) x 2 + 4 4y^{2}+4=8x^{2}>(8-\delta)x^{2}+4 .

Take n=2xy . Then 2 y 2 < 2 n 2 = 8 x 2 y 2 = 4 y 2 ( y 2 + 1 ) < ( 2 y 2 + 1 ) 2 2y^{2}<2n^{2}=8x^{2}y^{2}=4y^{2}(y^{2}+1)<(2y^{2}+1)^{2} , i.e. 2 y 2 < 2 n < 2 y 2 + 1 2y^{2}<\sqrt{2}n<2y^{2}+1 , which means 2 n = 2 y 2 \lfloor \sqrt{2}n \rfloor=2y^{2} .

Note that ( x , y ) = 1 (x,y)=1 , we see d = ( n , n 2 ) = ( 2 x y , 2 y 2 ) = 2 y d=(n,\lfloor n\sqrt{2} \rfloor)=(2xy,2y^{2})=2y . Therefore, d 4 = 16 y 4 > ( 8 δ ) x 2 4 y 2 = ( 8 δ ) n 2 d^{4}=16y^{4}>(8-\delta)x^{2}-4y^{2}=(8-\delta)n^{2} ,which implies d = ( n , n 2 ) > ( 8 δ ) 1 4 n d=(n,\lfloor n\sqrt{2} \rfloor)>(8-\delta)^{\frac{1}{4}}\sqrt{n} . \blacksquare

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...