The Acute Obtuse Combination

Geometry Level 4

If x x be an obtuse angle, y y be an acute angle, and sin x = 2 sin ( x + 2 y ) \sin x=2\sin (x+2y) , then choose the correct option.

tan y = 1 2 \tan y=\dfrac{1}{\sqrt2} tan y > 1 2 \tan y>\dfrac{1}{\sqrt2} tan y > 1 \tan y>1 0 < tan y < 1 2 0<\tan y<\dfrac{1}{\sqrt2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 25, 2020

Since 9 0 < x < 18 0 90^\circ < x < 180^\circ , let x = 9 0 + θ x = 90^\circ + \theta , so that both 0 < θ , y < 9 0 0 < \theta, y < 90^\circ . Then we have:

sin x = 2 sin ( x + 2 y ) Let x = 9 0 + θ sin ( 9 0 + θ ) = 2 sin ( 9 0 + θ + 2 y ) As sin ( 18 0 ϕ ) = sin ϕ sin ( 9 0 θ ) = 2 sin ( 9 0 θ 2 y ) and sin ( 9 0 ϕ ) = cos ϕ cos θ = 2 cos ( θ + 2 y ) = 2 cos θ cos 2 y 2 sin θ sin 2 y 1 = 2 cos 2 y 2 tan θ sin 2 y \begin{aligned} \sin x & = 2 \sin (x + 2y) & \small \blue{\text{Let }x = 90^\circ + \theta} \\ \sin (90^\circ + \theta) & = 2 \sin (90^\circ + \theta + 2y) & \small \blue{\text{As }\sin (180^\circ - \phi) = \sin \phi} \\ \sin (90^\circ - \theta) & = 2 \sin (90^\circ - \theta - 2y) & \small \blue{\text{and }\sin (90^\circ - \phi) = \cos \phi} \\ \cos \theta & = 2 \cos (\theta + 2y) \\ & = 2\cos \theta \cos 2y - 2\sin \theta \sin 2y \\ 1 & = 2 \cos 2y - 2 \tan \theta \sin 2y \end{aligned}

Using half-angle tangent substitution and let t = tan y t = \tan y .

2 ( 1 t 2 ) 1 + t 2 4 t tan θ 1 + t 2 = 1 3 t 2 + 4 t tan θ 1 = 0 t = tan y = 4 tan 2 θ + 3 2 tan θ 3 \begin{aligned} \frac {2(1-t^2)}{1+t^2} - \frac {4t\tan \theta}{1+t^2} & = 1 \\ \implies 3t^2 + 4t \tan \theta - 1 & = 0 \\ \implies t = \tan y & = \frac {\sqrt{4\tan^2 \theta + 3}-2\tan \theta}3 \end{aligned}

Note that tan y \tan y decreases with θ \theta monotonically. Therefore,

lim θ 9 0 4 tan 2 θ + 3 2 tan θ 3 < tan y < lim θ 0 4 tan 2 θ + 3 2 tan θ 3 0 < tan y < 1 3 \begin{aligned} \lim_{\theta \to 90^\circ} \frac {\sqrt{4\tan^2 \theta + 3}-2\tan \theta}3 < & \tan y < \lim_{\theta \to 0^\circ} \frac {\sqrt{4\tan^2 \theta + 3}-2\tan \theta}3 \\ 0 < & \tan y < \frac 1{\sqrt 3} \end{aligned}

Hence 0 < tan y < 1 2 \boxed {0 < \tan y < \frac 1{\sqrt 2}} .

Expanding the right hand side of the given equation and simplifying we get tan x = 2 sin ( 2 y ) 1 2 cos ( 2 y ) \tan x=\dfrac{2\sin (2y)}{1-2\cos (2y)} . Since x x is obtuse, tan x < 0 \tan x<0 . Since y y is acute, sin ( 2 y ) > 0 \sin (2y)>0 . Therefore 1 2 cos ( 2 y ) < 0 1-2\cos (2y)<0 , or cos ( 2 y ) > 1 2 \cos (2y)>\dfrac{1}{2} or y < π 6 y<\dfrac{π}{6} . This implies tan y < 1 3 < 1 2 \tan y<\dfrac{1}{√3}<\dfrac{1}{√2} . Since y y is acute, therefore tan y > 0 \tan y>0 , and hence 0 < tan y < 1 2 \boxed {0<\tan y<\dfrac{1}{√2}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...