If something over 0 is undefined, and if a part of an equation satisfies this condition, and if x=2 is just equal to 1/x=1/2 by cross-multiplying, then (x ^ { 3 } + y ^ { 3 } ) = 0 is equal to 1 / ( x ^ { 3 } + y ^ { 3 } ) = 1/0 by cross-multiplying giving and equation of 1 / ( x ^ { 3 } + y ^ { 3 } ) - 1/0 = 0; after doing least common denominator the result would be [ 0 - ( x ^ { 3 } + y ^ { 3 })] / 0 =0 which is - ( x ^ { 3 } + y ^ { 3 } ) /0 = 0, but it should not be equal to zero but undefined? Though if you solve it properly there are many solutions for this. Does it mean that all equations equal to 0 is undefined at the same time having a solution set? If not please explain why.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I'll assume this is your question:
I f s o m e t h i n g o v e r 0 i s u n d e f i n e d , a n d i f a p a r t o f a n e q u a t i o n s a t i s f i e s t h i s c o n d i t i o n , a n d i f x = 2 i s j u s t e q u a l t o x 1 = 2 1 b y c r o s s − m u l t i p l y i n g , t h e n ( x 3 + y 3 ) = 0 i s e q u a l t o x 3 + y 3 1 = 0 1 b y c r o s s − m u l t i p l y i n g g i v i n g a n e q u a t i o n o f ( x 3 + y 3 ) 1 − 0 1 = 0 ; a f t e r d o i n g l e a s t c o m m o n d e n o m i n a t o r t h e r e s u l t w o u l d b e 0 0 − ( x 3 + y 3 ) = 0 w h i c h i s 0 − ( x 3 + y 3 ) = 0 , b u t i t s h o u l d n o t b e e q u a l t o z e r o b u t u n d e f i n e d ? T h o u g h i f y o u s o l v e i t p r o p e r l y t h e r e a r e m a n y s o l u t i o n s f o r t h i s . D o e s i t m e a n t h a t a l l e q u a t i o n s e q u a l t o 0 i s u n d e f i n e d a t t h e s a m e t i m e h a v i n g a s o l u t i o n s e t ? I f n o t p l e a s e e x p l a i n w h y .