Cool Infinite Sum!

Let S S be the infinite sum given by S = n = 0 a n 1 0 2 n S = \sum_{n=0}^{\infty} \frac{a_n}{10^{2n}} where a n n 0 \langle a_n \rangle_{n \geq 0} is a sequence defined by a 0 = a 1 = 1 a_0 = a_1 = 1 and a j = 20 a j 1 108 a j 2 a_j = 20a_{j-1} - 108a_{j-2} for j 2 j \geq 2 . If S S can be expressed in the form of a b \dfrac{a}{b} , where a a and b b are coprime positive integers, then what is a a ?

2020 2023 2018 2025

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
May 22, 2018

Solving the recurrence relation, we obtain a n = 2 2 + 9 i 4 2 ( 10 + 2 i 2 ) n + 2 2 9 i 4 2 ( 10 2 i 2 ) n a_n \; = \; \frac{2\sqrt{2} + 9i}{4\sqrt{2}}(10 + 2i\sqrt{2})^n + \frac{2\sqrt{2} - 9i}{4\sqrt{2}}(10 - 2i\sqrt{2})^n for all n n , and so the sum is n = 0 a n 1 0 2 n = 2 2 + 9 i 4 2 n = 0 ( 10 + 2 i 2 100 ) n + 2 2 9 i 4 2 n = 0 ( 10 2 i 2 100 ) n = 2 2 + 9 i 4 2 × 1 1 10 + 2 i 2 100 + 2 2 9 i 4 2 × 1 1 10 2 i 2 100 = 2025 2027 \begin{aligned} \sum_{n=0}^\infty \frac{a_n}{10^{2n}} & = \; \frac{2\sqrt{2} + 9i}{4\sqrt{2}}\sum_{n=0}^\infty \left(\frac{10 + 2i\sqrt{2}}{100}\right)^n + \frac{2\sqrt{2} - 9i}{4\sqrt{2}}\sum_{n=0}^\infty \left(\frac{10 - 2i\sqrt{2}}{100}\right)^n \\ & = \; \frac{2\sqrt{2} + 9i}{4\sqrt{2}} \times \frac{1}{1 - \frac{10 + 2i\sqrt{2}}{100}} + \frac{2\sqrt{2} - 9i}{4\sqrt{2}} \times \frac{1}{1 - \frac{10 - 2i\sqrt{2}}{100}} \; = \; \frac{2025}{2027} \end{aligned} making the answer 2025 \boxed{2025} .

FYI: the denominator of the parenthetical quantities in your second line should be 100 100 instead of 10. 10.

Patrick Corn - 3 years ago

Log in to reply

So true...

Mark Hennings - 3 years ago
Patrick Corn
May 22, 2018

First we show that the sum converges, using the following lemma:

Lemma: a n 5 0 n |a_n| \le 50^n for all n . n.

Proof: By induction. It's true for n = 0 , 1 , n=0,1, and then supposing it's true for 0 , 1 , , k 1 , 0,1,\ldots,k-1, we have a k 20 a k 1 + 108 a k 2 20 5 0 k 1 + 108 5 0 k 2 = 5 0 k ( 2 5 + 108 2500 ) < 5 0 k . |a_k| \le 20|a_{k-1}| + 108|a_{k-2}| \le 20 \cdot 50^{k-1} + 108 \cdot 50^{k-2} = 50^k \left( \frac25 + \frac{108}{2500} \right) < 50^k.

So the sum converges because the absolute value of the n n th term is ( 1 / 2 ) n . \le (1/2)^n.

To evaluate the sum, write n = 2 a n 20 a n 1 + 108 a n 2 1 0 2 n = 0 n = 2 a n 1 0 2 n 20 n = 2 a n 1 1 0 2 n + 108 n = 2 a n 2 1 0 2 n = 0 ( S 1 1 100 ) 1 5 n = 2 a n 1 1 0 2 ( n 1 ) + 108 10000 n = 2 a n 2 1 0 2 ( n 2 ) = 0 ( S 1 1 100 ) 1 5 ( S 1 ) + 108 10000 S = 0 S ( 1 1 5 + 108 10000 ) = 1 1 5 + 1 100 S = 10000 2000 + 100 10000 2000 + 108 = 2025 2027 , \begin{aligned} \sum_{n=2}^\infty \frac{a_n-20a_{n-1}+108a_{n-2}}{10^{2n}} &= 0 \\ \sum_{n=2}^\infty \frac{a_n}{10^{2n}} - 20\sum_{n=2}^\infty \frac{a_{n-1}}{10^{2n}} + 108\sum_{n=2}^\infty \frac{a_{n-2}}{10^{2n}} &= 0 \\ \left(S - 1 - \frac1{100}\right) - \frac15 \sum_{n=2}^\infty \frac{a_{n-1}}{10^{2(n-1)}} + \frac{108}{10000}\sum_{n=2}^\infty \frac{a_{n-2}}{10^{2(n-2)}} &= 0 \\ \left(S - 1 - \frac1{100}\right) - \frac15 (S - 1) + \frac{108}{10000} S &= 0 \\ S\left( 1-\frac15 + \frac{108}{10000} \right) &= 1-\frac15 + \frac1{100} \\ S &= \frac{10000-2000+100}{10000-2000+108} = \frac{2025}{2027}, \end{aligned} so a = 2025 . a=\fbox{2025}.

Oh wow, I'm not familiar with this technique of finding the sum. Thanks! +1

Just curious, why do we have to prove that the sum converges? I feel like your first half of the solution is not necessary. I mean, if we have found the sum to be finite, doesn't it automatically implies that the sum converges? Or is there a case where the sum converges "through other means" and we just want to make sure it converges "conventionally"?

EDIT: Oh wait, nevermind. I got it. You have defined the sum to be S S in your latter part of your solution. To do so, we need to prove that S S is finite first. Otherwise, there might be a case of \infty - \infty .

Pi Han Goh - 3 years ago
Alapan Das
Mar 26, 2019

I shall right an easy explanation. Say, (a j)/10^2j=P j. So, S=P 1+P 2+..... Now ,you easily can find the following relation P j=0.2P j-1-0.0108P j-2 ,P j-1=0.2P j-2 -0.0108P j-3... ... ,... ,P 2=0.2P 1 - 0.0108P 0 Now add L.H.S and R.H.S. P 2+P 3+...=0.1892(P 1+P 2+...) -0.0108. Add P 1+P_0 to both sides. Then it becomes S=0.1892(S-1)+1.01-0.0108 S=0.1892S+0.81 S=2025/2027. So, a=2025

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...