Sine^2 Sum

Geometry Level 2

sin 2 ( 1 ) + sin 2 ( 2 ) + sin 2 ( 3 ) + + sin 2 ( 36 0 ) = ? \large \sin ^{ 2 }{( 1^\circ) } +\sin ^{ 2 }{( 2^\circ) } +\sin ^{ 2 }{ (3^\circ)+\ldots +\sin ^{ 2 }{ (360^\circ) } } = \ ?


The answer is 180.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Oct 20, 2015

Let the expression by S S , then we have:

S = k = 1 360 sin 2 k = k = 1 360 1 2 ( 1 cos 2 k ) = 1 2 ( k = 1 360 1 k = 1 360 cos 2 k ) See N o t e . = 1 2 ( 360 0 ) = 180 \begin{aligned} S & = \sum_{k=1}^{360} \sin^2 k^\circ \\ & = \sum_{k=1}^{360} \frac{1}{2} \left(1 - \cos 2 k^\circ \right) \\ & = \frac{1}{2} \left( \sum_{k=1}^{360} 1 - \color{#3D99F6}{\sum_{k=1}^{360} \cos 2 k^\circ} \right) \quad \quad \small \color{#3D99F6}{\text{See } Note.} \\ & = \frac{1}{2} \left( 360 - \color{#3D99F6}{0} \right) \\ & = \boxed{180} \end{aligned}

N o t e : \color{#3D99F6}{Note:}

We note that:

cos 2 k = cos ( 180 2 k ) k = 1 90 cos 2 k = cos 18 0 = 1 k = 1 180 cos 2 k = cos 18 0 + cos 36 0 = 1 + 1 = 0 k = 1 360 cos 2 k = 0 \begin{aligned} \cos 2k^\circ & = - \cos (180-2k)^\circ \\ \Rightarrow \sum_{k=1}^{90} \cos 2k^\circ & = \cos 180^\circ = -1 \\ \sum_{k=1}^{180} \cos 2k^\circ & = \cos 180^\circ + \cos 360^\circ & = -1+1 = 0 \\ \Rightarrow \sum_{k=1}^{360} \cos 2k^\circ & = 0 \end{aligned}

Notice that sin 2 ( x ) = sin 2 ( 180 x ) = sin 2 ( x 180 ) \sin^2(x)=\sin^2(180-x)=\sin^2(x-180) Thus k = 1 360 sin ( x ) = k = 1 180 2 sin ( x ) \sum_{k=1}^{360}\sin(x)=\sum_{k=1}^{180}2\sin(x) Also we see that sin 2 ( x ) = cos 2 ( 90 x ) = cos 2 ( x 90 ) \sin^2(x)=\cos^2(90-x)=\cos^2(x-90) Therefore k = 1 180 2 sin ( x ) = k = 1 180 sin 2 ( x ) + cos 2 ( x ) = k = 1 180 1 = 180 \sum_{k=1}^{180}2\sin(x)=\sum_{k=1}^{180}\sin^2(x)+\cos^2(x)=\sum_{k=1}^{180}1=180 So by transitivity, we must have k = 1 360 sin ( x ) = 180 \sum_{k=1}^{360}\sin(x)=\boxed{180}

I think you missed the power of two on the sines a few times...

miksu rankaviita - 3 years, 8 months ago
Miksu Rankaviita
Oct 7, 2017

sin 2 ( x ) \sin^2(x^{\circ}) is symmetric about y = 18 0 y=180^{\circ} so

\label e q 1 i = 1 360 sin 2 ( i ) = 0 36 0 sin 2 ( x ) d x = 0 360 sin 2 ( 2 π 360 x ) d x u = 2 π 360 x d u = 2 π 360 d x = 360 2 π 0 360 sin 2 ( x ) d x = 360 2 π [ 1 2 ( u sin ( u ) cos ( u ) ) ] 0 360 u = 2 π 360 x = { 2 π , u = 360 0 , u = 0 = 360 2 π [ ( 1 2 ( 2 π sin ( 2 π ) cos ( 2 π ) ) ) ( 1 2 ( 0 sin ( 0 ) cos ( 0 ) ) ) ] = 360 4 π [ 2 π 0 1 0 + 0 1 ] = 360 2 π 4 π = 360 2 = 180 \label{eq1} \begin{aligned} \sum_{i=1}^{360}\sin^2(i^{\circ}) &= \int_{0^{\circ}}^{360^{\circ}} \sin^2(x)dx \\ &= \int_0^{360}\sin^2(\frac{2\pi}{360}x)dx \\ & u = \frac{2\pi}{360}x \Leftrightarrow du = \frac{2\pi}{360}dx \\ &= \frac{360}{2\pi}\int_0^{360}\sin^2(x)dx \\ &= \frac{360}{2\pi} \bigg[ \frac{1}{2}(u-\sin(u)\cos(u)) \bigg]_0^{360} \\ & u = \frac{2\pi}{360}x = \begin{cases} 2\pi, u = 360 \\ 0, u = 0 \end{cases} \\ &=\frac{360}{2\pi} \bigg[ (\frac{1}{2}(2\pi-\sin(2\pi)\cos(2\pi))) - (\frac{1}{2}(0-\sin(0)\cos(0))) \bigg] \\ &=\frac{360}{4\pi} \bigg[ 2\pi - 0\cdot 1 - 0 + 0\cdot 1 \bigg] \\ &= \frac{360\cdot 2\pi}{4\pi} = \frac{360}{2} = 180 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...