The answer is not 1

Calculus Level 4

If x 1 x x 2 \displaystyle \frac{x}{1-x-x^2} can be expressed in the form n = 1 a n x n \displaystyle \sum_{n=1}^\infty a_n x^n for a certain subset of reals such that a i R \displaystyle a_i \in \mathbb{R} and i N , \forall i \in \mathbb{N} , what is the value of lim n a n + 1 a n ? \displaystyle{\lim_{n \to \infty} \frac{a_{n+1}}{a_n}}?


The answer is 1.618.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Write out x 1 x x 2 \frac{x}{1-x-x^2} as a power series and manipulate

x 1 x x 2 = n = 1 a n x n x = ( 1 x x 2 ) n = 1 a n x n x = n = 1 a n x n n = 1 a n x n + 1 n = 1 a n x n + 2 x = a 1 x + a 2 x 2 a 1 x 2 + n = 3 ( a n a n 1 a n 2 ) x n x = a 1 x + ( a 2 a 1 ) x 2 + n = 3 ( a n a n 1 a n 2 ) x n \begin{aligned} \frac x{1-x-x^2}&=\sum^\infty_{n=1}a_nx^n\\ x&=(1-x-x^2)\sum^\infty_{n=1}a_nx^n\\ x&=\sum^\infty_{n=1}a_nx^n-\sum^\infty_{n=1}a_nx^{n+1}-\sum^\infty_{n=1}a_nx^{n+2}\\ x&=a_1x+a_2x^2-a_1x^2+\sum^\infty_{n=3}(a_n-a_{n-1}-a_{n-2})x^n\\ x&=a_1x+(a_2-a_1)x^2+\sum^\infty_{n=3}(a_n-a_{n-1}-a_{n-2})x^n\\ \end{aligned}

Now relate the coefficients. this gives a 1 = 1 a_1=1 and a 2 a 1 = 0 a 2 = a 1 = 1 a_2-a_1=0\implies a_2=a_1=1 . Then the other coefficients have to equal zero as well meaning we have the recurrence relation a n a n 1 a n 2 = 0 a n = a n 1 + a n 2 a_n-a_{n-1}-a_{n-2}=0\implies a_n=a_{n-1}+a_{n-2} .

Now because a 1 = a 2 = 1 a_1=a_2=1 and we have an addition relation it means that a n = F n a_{n}=F_n where F n F_n are the Fibonacci numbers.

Therefore lim n a n + 1 a n = lim n F n + 1 F n = ϕ 1.618 \lim_{n\to\infty} \frac{a_{n+1}}{a_n}=\lim_{n\to\infty} \frac{F_{n+1}}{F_{n}}=\phi\approx\boxed{1.618} The last one is a well known limit.


Edit: To expand on deriving the limit

L = lim n F n + 1 F n L = lim n F n + F n 1 F n L = 1 + lim n F n 1 F n L = 1 + 1 lim n F n F n + 1 L = 1 + 1 L \begin{aligned} L&=\lim_{n\to\infty} \frac{F_{n+1}}{F_n} \\ L&=\lim_{n\to\infty} \frac{F_n+F_{n-1}}{F_n} \\ L&=1+\lim_{n\to\infty} \frac{F_{n-1}}{F_n} \\ L&=1+\frac1{\displaystyle\lim_{n\to\infty} \frac{F_{n}}{F_{n+1}}} \\ L&=1+\frac1L\\ \end{aligned}

The last equation can be solved easily. It is the definition of the golden ratio and can be turned into a quadratic to yield it also. But be careful about introducing a new solution when turning it into a quadratic.

You can use Binet's formula for that!

Joel Yip - 6 years, 2 months ago

We can show that x 1 x x 2 \frac{x}{1-x-x^2} is the generating function of the Fibonacci number by long division method. It rather difficult to show here.

x 1 x x 2 = x ( 1 x x 2 ) + x 2 + x 3 1 x x 2 = x + x 2 + x 3 1 x x 2 \dfrac{x}{1-x-x^2}=\dfrac{x(1-x-x^2)+x^2+x^3}{1-x-x^2}=x+ \dfrac{x^2+x^3}{1-x-x^2}

= x + x 2 ( 1 x x 2 ) + 2 x 3 + x 4 1 x x 2 = x + x 2 + 2 x 3 + x 4 1 x x 2 =x+\dfrac{x^2(1-x-x^2)+2x^3+x^4}{1-x-x^2}=x+ x^2 + \dfrac {2x^3+x^4} {1-x-x^2}

= x + x 2 + 2 x 3 ( 1 x x 2 ) + 3 x 4 + 2 x 5 1 x x 2 = x + x 2 + 2 x 3 + 3 x 4 + 2 x 5 1 x x 2 =x+x^2 +\dfrac{2x^3(1-x-x^2)+3x^4+2x^5}{1-x-x^2}=x+ x^2 + 2x^3 + \dfrac {3x^4+2x^5} {1-x-x^2}

= x + x 2 + 2 x 3 + 3 x 4 ( 1 x x 2 ) + 5 x 5 + 3 x 6 1 x x 2 =x+x^2 + 2x^3 + \dfrac{3x^4(1-x-x^2)+5x^5+3x^6}{1-x-x^2}

= x + x 2 + 2 x 3 + 3 x 4 5 x 5 + 3 x 6 1 x x 2 =x+ x^2 + 2x^3 + 3x^4 \dfrac {5x^5+3x^6} {1-x-x^2}

= x + x 2 + 2 x 3 + 3 x 4 + 5 x 5 ( 1 x x 2 ) + 8 x 6 + 5 x 7 1 x x 2 =x+x^2 + 2x^3 + 3 x^4+ \dfrac{5x^5(1-x-x^2)+8x^6+5x^7}{1-x-x^2}

= x + x 2 + 2 x 3 + 3 x 4 + 5 x 5 + 8 x 6 + 5 x 7 1 x x 2 = x+ x^2 + 2x^3 + 3x^4 + 5x^5 + \dfrac {8x^6+5x^7} {1-x-x^2}

= x + x 2 + 2 x 3 + 3 x 4 + 5 x 5 + 8 x 6 + 13 x 7 + . . . = x + x^2 + 2x^3 + 3x^4 + 5x^5 + 8x^6 + 13x^7 + ...

About lim n a n + 1 a n \lim_{n \rightarrow \infty}{\frac{a_{n+1}}{a_n}} , I don't know what φ \varphi is, but my answer is as follows:

lim n a n + 1 a n = lim n a n + 2 a n + 1 \lim_{n \rightarrow \infty}{\frac{a_{n+1}}{a_n}} = \lim_{n \rightarrow \infty}{\frac{a_{n+2}}{a_{n+1}}}

lim n a n + 1 a n a n + 2 a n + 1 = 0 \lim_{n \rightarrow \infty}{\frac{a_{n+1}}{a_n} - \frac{a_{n+2}}{a_{n+1}}=0 }

lim n a n + 1 2 a n a n + 2 a n a n + 1 = 0 \lim_{n \rightarrow \infty}{\frac{a_{n+1}^2-a_na_{n+2}}{a_na_{n+1}}=0}

lim n a n + 1 2 a n a n + 2 = 0 \Rightarrow \lim_{n \rightarrow \infty}{a_{n+1}^2-a_na_{n+2}=0}

Chew-Seong Cheong - 6 years, 9 months ago

Continue...

Note that a n + 1 = a n + a n 1 a_{n+1}=a_n+a_{n-1} , so that:

lim n a n + 1 2 a n a n + 2 = 0 \lim_{n \rightarrow \infty} {a_{n+1}^2 - a_na_{n+2}=0}

lim n a n + 1 2 a n ( a n + 1 + a n ) = 0 \Rightarrow \lim_{n \rightarrow \infty} {a_{n+1}^2 - a_n (a_{n+1} + a_n) = 0}

lim n ( a n + 1 a n ) 2 a n + 1 a n 1 = 0 \lim_{n \rightarrow \infty} { \left( \frac{a_{n+1}}{a_n} \right)^2 - \frac{a_{n+1}}{a_n} - 1=0}

lim n a n + 1 a n = 1 + 1 + 4 2 = 1 + 5 2 = 1.618 \lim_{n \rightarrow \infty} {\frac{a_{n+1}}{a_n} = \frac{1 + \sqrt{1+4}}{2} = \frac{1 + \sqrt{5}}{2} = \boxed{1.618} }

Chew-Seong Cheong - 6 years, 9 months ago
Abhishek Sinha
Sep 5, 2014

The power-series expansion of x 1 x x 2 \frac{x}{1-x-x^2} is valid for all (and only) x < α |x|<\alpha , where α \alpha is the positive zero of the denominator, i.e. 1 α α 2 = 0 1-\alpha-\alpha^2=0 , i.e., α = ϕ \alpha=\phi , the golden ratio.

Now from the ratio-test, we know it is sufficient that lim n a n + 1 y a n < 1 \lim_{n\to \infty}\frac{|a_{n+1}||y|}{|a_n|}<1 for the series to converge at x = y x=y . Since α \alpha is the radius of convergence, at x = α x=\alpha the above ratio should be one. Hence lim n a n + 1 a n = 1 ϕ \lim_{n \to \infty}\frac{|a_{n+1}|}{|a_n|}=\frac{1}{\phi} . Also, from the series expansion it is evident that all the coefficients are non-negative. Thus lim n a n + 1 a n = 1 ϕ \lim_{n \to \infty}\frac{a_{n+1}}{a_n}=\frac{1}{\phi} .

K T
Nov 16, 2020

Doing a long division, we quickly discover that, whenever the right hand side converges (i.e. when |x|<1): x 1 x x 2 = x + x 2 + 2 x 3 + 3 x 4 + 5 x 5 + . . . + F n x n + . . . \frac{x}{1-x-x^2}=x+x^2+2x^3+3x^4+5x^5+...+F_nx^n+... Where F n F_n is the nth fibonacci number (in addition, we define F 0 = 0 F_0=0 ). This implies that the nth-order derivative of this expression has one constant term: n ! F n n! F_n . So the nth order derivatife evaluated at 0 : f ( n ) ( 0 ) = n ! F n f^{(n)}(0)=n! F_n

The maclaurin series (or Taylor expansion in 0) of f is

f ( x ) = n = 0 f ( n ) ( 0 ) x n n ! = n = 0 F n x n f(x)=\sum_{n=0}^{\infty}{\frac{f^{(n)}(0)x^n}{n!}}= \sum_{n=0}^{\infty}{F_n x^n}

and hence the requested expression equals φ = 5 + 1 2 = 1.61803... φ=\frac{\sqrt{5}+1}{2}=1.61803...

Daniel Liu
Sep 4, 2014

It is well-known that x 1 x x 2 \dfrac{x}{1-x-x^2} is the generating function of the fibonacci numbers. Thus, lim n a n + 1 a n = φ = 1.618 \lim\limits_{n\to \infty} \dfrac{a_{n+1}}{a_n}=\varphi=\boxed{1.618}

If we need to prove that x 1 x x 2 \dfrac{x}{1-x-x^2} is the generating function of the fibonacci numbers, then have fun guys.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...