The answer is not 1 -1

Algebra Level 5

Let a 1 , . . . , a 2018 a_1,...,a_{2018} be real numbers so that i = 1 2018 a i = 1 \sum _{ i=1 }^{ 2018 }{ { a }_{ i } }=1 . Find the maximum value of i = 1 2018 a i a i 2 + 1 \sum _{ i=1 }^{ 2018 }{ \frac { { a }_{ i } }{ { a }_{ i }^{ 2 }+1 } } .

If the answer can be written as x 2016 2 + 1 \frac{x}{{2016}^{2}+1} , find 2 x 2016 2 1 \left \lfloor{2\left| x-{2016}^{2}-1 \right|}\right \rfloor .

Bonus : Generalize!

Inspiration.


The answer is 8189473823.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
Jun 30, 2018

This isn't complete yet.

a 1 = 2016 , a 2 = a 3 = . . . = a 2018 = 1 a_1=-2016,a_2=a_3=...=a_{2018}=1 ,so x = 8197602337 , y = 8128514 x=8197602337,y=8128514

These values do not produce the maximum.

Set 2017 of the variables equal to x x . Then the last variable is 1 2017 x 1 - 2017x , and the sum is equal to f ( x ) = 2017 x x 2 + 1 + 1 2017 x ( 1 2017 x ) 2 + 1 . f(x) = \frac{2017x}{x^2 + 1} + \frac{1 - 2017x}{(1 - 2017x)^2 + 1}. Taking the derivative, we find f ( x ) = 2017 ( 2016 x 1 ) ( 2018 x 1 ) ( 4068289 x 4 4034 x 3 4068289 x 2 + 4034 x 4 ) ( x 2 + 1 ) 2 ( 4068289 x 2 4034 x + 2 ) 2 . f'(x) = -\frac{2017(2016x - 1)(2018x - 1)(4068289x^4 - 4034x^3 - 4068289x^2 + 4034x - 4)}{(x^2 + 1)^2 (4068289x^2 - 4034x + 2)^2}. The polynomial 4068289 x 4 4034 x 3 4068289 x 2 + 4034 x 4 4068289x^4 - 4034x^3 - 4068289x^2 + 4034x - 4 has a root that is very close to 1, but not equal to 1.

Jon Haussmann - 2 years, 11 months ago

Log in to reply

I see.I typed the equation in wolfram alpha,and it comes out to be x 1 x\approx 1 ,but I misread it as x = 1 x=1 .After I posted the solution,I found out,"Wait, x = 1 x=1 shouldn't be the solution!".But I couldn't think of why the answer is still 8189473823.Maybe @Steven Jim should edit it to integers instead of real numbers.

P.S.You are 1 of the solvers,too.How did you solve it?

X X - 2 years, 11 months ago

Log in to reply

Seen. Rechecking. Thanks.

Steven Jim - 2 years, 11 months ago

Relevant wiki: Jensen's Inequality

i think the answer is 201 8 2 201 8 2 + 1 \frac{2018^2}{2018^2+1}

consider the concave function f ( x ) = x x 2 + 1 x ( 0 , 1 ) using Jensen’s Inequality with x 1 + x 2 + + x 2018 = 1 f ( x 1 ) + f ( x 2 ) + + f ( x 2018 ) 2018 f ( x 1 + x 2 + + x 2018 2018 ) x 1 x 1 2 + 1 + x 2 x 2 2 + 1 + + x 2018 x 2018 2 + 1 2018 f ( 1 2018 ) x 1 x 1 2 + 1 + x 2 x 2 2 + 1 + + x 2018 x 2018 2 + 1 201 8 2 201 8 2 + 1 \begin{aligned} &\text{consider the concave function } f(x)=\frac{x}{x^2+1} x \in (0,1)\\ &\text{using Jensen's Inequality with } x_1+x_2+\cdots +x_{2018}=1 \\ &\frac{f(x_1)+f(x_2)+\cdots +f(x_{2018})}{2018}\leq f\left ( \frac{x_1+x_2+\cdots +x_{2018}}{2018} \right )\\ &\frac{x_1}{x^2_1+1}+\frac{x_2}{x^2_2+1}+\cdots +\frac{x_{2018}}{x^2_{2018}+1}\leq 2018f\left ( \frac{1}{2018} \right )\\ &\frac{x_1}{x^2_1+1}+\frac{x_2}{x^2_2+1}+\cdots +\frac{x_{2018}}{x^2_{2018}+1}\leq \frac{2018^2}{2018^2+1} \end{aligned}

Hassan Abdulla - 2 years, 11 months ago

Log in to reply

It's not a concave function,since the variables can be negative.

X X - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...