The answer is not 4 !!

Calculus Level 3

Three points in the x y x y plane are given as P ( 0 , 5 ) , Q ( 12 , 10 ) P( 0, 5) , Q(12, 10) and a third point R ( t , 0 ) R (t, 0) , where t R t \in \mathbb{R} . Here point R R is sliding on the x x -axis. Find the value of t t that will result in a maximum angle θ = P R Q \theta = \angle PRQ .


The answer is 6.385.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

David Vreken
May 27, 2020

By the distance equation, P Q = ( 0 12 ) 2 + ( 5 10 ) 2 = 13 PQ = \sqrt{(0 - 12)^2 + (5 - 10)^2} = 13 , P R = ( 0 t ) 2 + ( 5 0 ) 2 = t 2 + 25 PR = \sqrt{(0 - t)^2 + (5 - 0)^2} = \sqrt{t^2 + 25} , and Q R = ( 12 t ) 2 + ( 10 0 ) 2 = t 2 24 t + 244 QR = \sqrt{(12 - t)^2 + (10 - 0)^2} = \sqrt{t^2 - 24t + 244} .

By the law of cosines, cos P R Q = P R 2 + Q R 2 P Q 2 2 P R Q R \cos \angle PRQ = \frac{PR^2 + QR^2 - PQ^2}{2 \cdot PR \cdot QR} , or cos θ = ( t 2 + 25 ) 2 + ( t 2 24 t + 244 ) 2 1 3 2 2 t 2 + 25 t 2 24 t + 244 \cos \theta = \frac{(\sqrt{t^2 + 25})^2 + (\sqrt{t^2 - 24t + 244})^2 - 13^2}{2 \cdot \sqrt{t^2 + 25} \cdot \sqrt{t^2 - 24t + 244}} , which can be rearranged to cos 2 θ = t 4 24 t 3 + 244 t 2 1200 t + 2500 t 4 24 t 3 + 269 t 2 600 t + 6100 \cos^2 \theta = \frac{t^4 - 24t^3 + 244t^2 - 1200t + 2500}{t^4 - 24t^3 + 269t^2 - 600t + 6100} .

By implicit differentiation, 2 cos θ sin θ d θ d t = ( t 4 24 t 3 + 269 t 2 600 t + 6100 ) ( 4 t 3 72 t 2 + 488 t 1200 ) ( t 4 24 t 3 + 244 t 2 1200 t + 2500 ) ( 4 t 3 72 t 2 + 538 t 600 ) ( t 4 24 t 3 + 269 t 2 600 t + 6100 ) 2 2 \cos \theta \sin \theta \frac{d\theta}{dt} = \frac{(t^4 - 24t^3 + 269t^2 - 600t + 6100)(4t^3 - 72t^2 + 488t - 1200) - (t^4 - 24t^3 + 244t^2 - 1200t + 2500)(4t^3 - 72t^2 + 538t - 600)}{(t^4 - 24t^3 + 269t^2 - 600t + 6100)^2} , and when d θ d t = 0 \frac{d\theta}{dt} = 0 (for a maximum θ \theta ), this simplifies to ( t + 12 ) ( t 2 12 t + 50 ) ( t 2 + 24 t 194 ) = 0 (t + 12)(t^2 - 12t + 50)(t^2 + 24t - 194) = 0 , which solves to t = 13 2 12 6.385 t = 13\sqrt{2} - 12 \approx \boxed{6.385} for 0 < t < 12 0 < t < 12 .

Jon Haussmann
Jun 6, 2020

For the point R R that maximizes P R Q \angle PRQ , the circumcircle of triangle P Q R PQR is tangent to the x x -axis.

Let r r be the radius of the circle. Then the center of the circle is ( t , r ) (t,r) , so t 2 + ( r 5 ) 2 = r 2 , ( t 12 ) 2 + ( r 10 ) 2 = r 2 . \begin{aligned} t^2 + (r - 5)^2 &= r^2, \\ (t - 12)^2 + (r - 10)^2 &= r^2. \end{aligned}

We can solve for t t to get 12 ± 13 2 -12 \pm 13 \sqrt{2} . The root that makes sense is 12 + 13 2 -12 + 13 \sqrt{2} .

Slope of P R = m 1 = 5 t \overline {PR}=m_1=-\dfrac{5}{t} .

That of Q R = m 2 = 10 12 t \overline {QR}=m_2=\dfrac{10}{12-t}

So tan P R Q = m 1 m 2 1 + m 1 m 2 = \tan \angle {PRQ}=\dfrac{m_1-m_2}{1+m_1m_2}=

5 ( t + 12 ) t 2 12 t + 50 \dfrac{5(t+12)}{t^2-12t+50}

This will be extrimum when it's first differential coefficient with respect to t t is zero :

t 2 + 24 t 194 = 0 t 6.385 , 30.685 \implies t^2+24t-194=0\implies t\approx 6.385, -30.685

For the angle to be maximum , the second derivative should be negative. This happens for t 6.385 t\approx \boxed {6.385} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...