The answer is NOT zero.

Calculus Level 5

I = 0 π / 2 ln ( cos ( x ) ) ln ( sin ( x ) ) tan ( x ) d x = a b ζ ( c ) I=\int_{0}^{\pi/2} \frac{\ln(\cos(x))\ln(\sin(x))}{\tan(x)}dx = \frac{a}{b} \zeta(c) where a a , b b and c c are positive integers and a a and b b are coprime. What is a + b + c a+b+c ?

ζ ( ) \zeta (\cdot) is the Reimann Zeta Function


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Jun 17, 2019

I = 0 π / 2 ln ( cos ( x ) ) ln ( sin ( x ) ) tan ( x ) d x \large \displaystyle I = \int_0^{\pi/2} \frac{ \ln(\cos(x)) \ln(\sin(x)) } {\tan(x)} dx

I = 0 π / 2 ln ( cos ( x ) ) ln ( sin ( x ) ) cos ( x ) sin ( x ) d x \large \displaystyle I = \int_0^{\pi/2} \frac{ \ln(\cos(x)) \ln(\sin(x)) \cos(x)} {\sin(x)} dx

Make u = sin ( x ) u = \sin(x) . Then, cos ( x ) d x = d u \cos(x) dx = du and cos ( x ) = 1 u 2 = ( 1 u 2 ) 1 2 \cos(x) = \sqrt{1 - u^2} = (1-u^2)^{\frac12} (the positive square root, since x ( 0 , π / 2 ) x \in (0, \pi/2) ):

I = 0 1 ln ( ( 1 u 2 ) 1 2 ) ln ( u ) u d x \large \displaystyle I = \int_0^{1} \frac{ \ln((1 - u^2)^{\frac12}) \ln(u) } {u} dx

I = 1 2 0 1 ln ( 1 u 2 ) ln ( u ) u d x \large \displaystyle I = \frac12 \int_0^{1} \frac{ \ln(1 - u^2) \ln(u) } {u} dx

Then, by integration by parts making f = ln ( 1 u 2 ) f = \ln(1 - u^2) and g = ln ( u ) u g' = \frac{\ln(u)}{u} :

I = 1 2 [ ln ( 1 u 2 ) ln 2 ( u ) 2 0 1 + 0 1 u ln 2 ( u ) 1 u 2 d u ] \large \displaystyle I = \frac12 \left [ \frac{\ln(1-u^2) \ln^2(u)}{2} \Bigg |_0^1 + \int_0^1 \frac{u \ln^2(u)}{1 - u^2} du \right ]

The first term goes to 0 0 both when u 0 u \rightarrow 0 and when u 1 u \rightarrow 1 . This can be shown by the series of ln ( 1 x ) \ln(1-x) for x < 1 |x| < 1 (see below). Thus:

I = 1 2 0 1 u ln 2 ( u ) 1 u 2 d u \large \displaystyle I = \frac12 \int_0^1 \frac{u \ln^2(u)}{1 - u^2} du

We then make u = e t u = e^t . Then d u = e t d t du = e^t dt and:

I = 1 2 0 e t t 2 1 e 2 t e t d t \large \displaystyle I = \frac12 \int_{- \infty}^0 \frac{e^t t^2}{1 - e^{2t}} e^t dt

Multiplying above and below by e 2 t e^{-2t} :

I = 1 2 0 t 2 e 2 t 1 d t \large \displaystyle I = \frac12 \int_{- \infty}^0 \frac{t^2}{e^{-2t} - 1} dt ;

Now we make t = v 2 t = -\frac{v}{2} , d t = d v 2 dt = -\frac{dv}{2}

I = 1 16 0 v 2 e v 1 d v \large \displaystyle I = \frac{1}{16} \int_{0}^{\infty} \frac{v^2}{e^v - 1} dv

By the definition of the Riemann zeta function ζ ( s ) \zeta(s) :

ζ ( s ) = 1 Γ ( s ) 0 x s 1 e x 1 d x \large \displaystyle \zeta(s) = \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{x^{s-1}}{e^x-1} dx

This integral will be exactly equal to:

I = 1 16 Γ ( 3 ) ζ ( 3 ) \large \displaystyle I = \frac{1}{16} \Gamma(3) \zeta(3)

Where Γ ( z ) \Gamma(z) is the Gamma function . Since Γ ( z ) = ( z 1 ) ! \Gamma(z) = (z-1)! :

I = 1 8 ζ ( 3 ) a = 1 , b = 8 , c = 3 a + b + c = 12 \color{#3D99F6} \boxed{\large \displaystyle I = \frac{1}{8}\zeta(3)} \\ \color{#3D99F6} \large \displaystyle a=1, b=8, c = 3 \rightarrow \boxed{\large \displaystyle a+b+c=12}


NOTE: The aforementioned proof. Consider:

C = ln ( 1 u 2 ) ln 2 ( u ) \large \displaystyle C = \ln(1-u^2) \ln^2(u)

By the Taylor series of ln ( 1 x ) \ln(1-x) :

C = k = 1 ln 2 ( u ) u 2 k k \large \displaystyle C = - \sum_{k=1}^{\infty} \frac{\ln^2(u) u^{2k}}{k}

When u = 1 u = 1 , ln ( u ) = 0 \ln(u) = 0 and C = 0 C = 0 .

When u = 0 u = 0 :

C = k = 1 lim u 0 ln 2 ( u ) k u 2 k \large \displaystyle C = - \sum_{k=1}^{\infty} \lim_{u \rightarrow 0} \frac{\ln^2(u)}{\frac{k}{u^{2k}}}

In each term of the sum, we'll have a / \infty / \infty case, in which L'Hôpital's rule applies:

C = k = 1 lim u 0 2 ln ( u ) u 2 k 2 u 2 k + 1 \large \displaystyle C = - \sum_{k=1}^{\infty} \lim_{u \rightarrow 0} \frac{\frac{2\ln(u)}{u}}{\frac{-2k^2}{u^{2k+1}}}

C = k = 1 lim u 0 ln ( u ) k 2 u 2 k \large \displaystyle C = \sum_{k=1}^{\infty} \lim_{u \rightarrow 0} \frac{\ln(u)}{\frac{k^2}{u^{2k}}}

Again a / \infty / \infty case, in which L'Hôpital's rule applies:

C = k = 1 lim u 0 1 u 2 k 3 u 2 k + 1 \large \displaystyle C = \sum_{k=1}^{\infty} \lim_{u \rightarrow 0} \frac{\frac{1}{u}}{\frac{-2k^3}{u^{2k+1}}} .

C = k = 1 lim u 0 u 2 k 2 k 3 \large \displaystyle C = \sum_{k=1}^{\infty} \lim_{u \rightarrow 0} \frac{-u^{2k}}{2k^3 } .

Which will also make C = 0 C = 0 as u 0 u \rightarrow 0

Infinite series is a powerful technique to evaluate integrals

Srikanth Tupurani - 1 year, 11 months ago

You have to justify some things. Like limit of an infinite series is sum of the limits. This is not true.

Srikanth Tupurani - 1 year, 11 months ago

Moderator: Can you consider my answer( E Koh) to "How many digits do I really have?" as being close enough and award me the correct answer?

E Koh - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...