Long Enough

Geometry Level 4

( 1 tan 2 ( x 2 2011 ) ) ( 1 tan 2 ( x 2 2010 ) ) ( 1 tan 2 ( x 2 ) ) = 2 2011 3 tan ( x 2 2011 ) \left(1- \tan^2 \left(\frac x{2^{2011}} \right)\right)\left(1- \tan^2 \left(\frac x{2^{2010}} \right)\right) \cdots \left(1- \tan^2 \left(\frac x2 \right)\right) = 2^{2011} \sqrt3 \tan \left( \frac x{2^{2011}} \right)

What is the value of sin ( 2 x ) \sin(2x) if x x satisfy the equation above?


The answer is 0.87.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 11, 2018

P = ( 1 tan 2 ( x 2 ) ) ( 1 tan 2 ( x 2 2 ) ) ( 1 tan 2 ( x 2 3 ) ) ( 1 tan 2 ( x 2 2011 ) ) Since tan 2 θ = 2 tan θ 1 tan 2 θ = 2 tan ( x 2 ) tan ( x ) × 2 tan ( x 2 2 ) tan ( x 2 ) × 2 tan ( x 2 3 ) tan ( x 2 2 ) × 2 tan ( x 2 2011 ) tan ( x 2 2010 ) = 2 tan ( x 2 ) tan ( x ) × 2 tan ( x 2 2 ) tan ( x 2 ) × 2 tan ( x 2 3 ) tan ( x 2 2 ) × 2 tan ( x 2 2011 ) tan ( x 2 2010 ) = 2 2011 tan ( x 2 2011 ) tan ( x ) \begin{aligned} P & = \left(1-\tan^2 \left(\frac x2 \right) \right)\left(1-\tan^2 \left(\frac x{2^2}\right) \right) \left(1-\tan^2 \left(\frac x{2^3}\right) \right) \cdots \left(1-\tan^2 \left(\frac x{2^{2011}}\right) \right) & \small \color{#3D99F6} \text{Since }\tan 2\theta = \frac {2\tan \theta}{1-\tan^2 \theta} \\ & = \frac {2\tan \left(\frac x2\right)}{\tan (x)} \times \frac {2\tan \left(\frac x{2^2}\right)}{\tan \left(\frac x2 \right)} \times \frac {2\tan \left(\frac x{2^3}\right)}{\tan \left(\frac x{2^2} \right)} \times \cdots \frac {2\tan \left(\frac x{2^{2011}}\right)}{\tan \left(\frac x{2^{2010}} \right)} \\ & = \frac {2 \color{#3D99F6}\cancel{\tan \left(\frac x2\right)}}{\tan (x)} \times \frac {2\color{#D61F06}\cancel{\tan \left(\frac x{2^2}\right)}}{\color{#3D99F6}\cancel{\tan \left(\frac x2\right)}} \times \frac {2 \color{#3D99F6}\cancel{\tan \left(\frac x{2^3}\right)}}{\color{#D61F06}\cancel{\tan \left(\frac x{2^2}\right)}} \times \cdots \frac {2\tan \left(\frac x{2^{2011}}\right)}{\color{#D61F06}\cancel{\tan \left(\frac x{2^{2010}} \right)}} \\ & = \frac {2^{2011}\tan \left(\frac x{2^{2011}} \right)}{\tan (x)} \end{aligned}

Since P = 2 2011 3 tan ( x 2 2011 ) = 2 2011 tan ( x 2 2011 ) tan ( x ) P = 2^{2011}\sqrt 3 \tan \left(\dfrac x{2^{2011}} \right) = \dfrac {2^{2011}\tan \left(\frac x{2^{2011}} \right)}{\tan (x)} , tan ( x ) = 1 3 \implies \tan (x) = \dfrac 1{\sqrt 3} x = π 6 \implies x = \dfrac \pi 6 and sin 2 x = sin π 3 = 3 2 0.866 \sin 2x = \sin \dfrac \pi 3 = \dfrac {\sqrt 3}2 \approx \boxed{0.866} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...