The approach will leave its marks

Geometry Level 4

{ ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2 = 9 ( x 2 x 3 ) 2 + ( y 2 y 3 ) 2 = 16 ( x 1 x 3 ) 2 + ( y 1 y 3 ) 2 = 25 \begin{cases} (x_1-x_2)^2+(y_1-y_2)^2=9 \\ (x_2-x_3)^2+(y_2-y_3)^2=16 \\ (x_1-x_3)^2+(y_1-y_3)^2=25 \end{cases}

If above 3 conditions hold simultaneously,

then find the value of x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 2 \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2


Try the set : Practice Problems for JEE-Mains and Give a final Boost to your JEE_preparation. All the best!


The answer is 144.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sandeep Bhardwaj
Mar 31, 2015

Let A ( x 1 , y 1 ) , B ( x 2 , y 2 ) a n d C ( x 3 , y 3 ) A \equiv (x_1,y_1) \quad , B \equiv (x_2,y_2) \quad and \quad C \equiv (x_3,y_3)

A B = 3 , B C = 4 a n d C A = 5 \therefore \quad AB=3 \quad , BC=4 \quad and \quad CA=5

area of Δ A B C = 1 2 x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 = 1 2 × 3 × 4 \because \text{area of} \ \ \Delta ABC = \dfrac{1}{2} \cdot \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \dfrac{1}{2} \times 3 \times 4

( Δ A B C is right angled. ) (\Delta ABC \ \text{is right angled.})

x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 2 = ( 12 ) 2 = 144 \implies \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2=(12)^2=\Large \boxed{144}

enjoy !

Good one, did exactly the same . (:

Aniket Verma - 6 years, 2 months ago

did the same thing :)

Krishna Ramesh - 6 years, 1 month ago
Heer Shah
Apr 7, 2015

put x1=3 x2=0 x3=0 y1=y2=0 and y3=4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...