The Appropriate Identity

Geometry Level 2

Evaluate

1000 × k = 0 a r c t a n ( 4 4 k 2 + 3 ) \large \left \lfloor 1000 \times \displaystyle\sum\limits_{k=0}^{\infty} \mathrm{arctan} \left( \frac{4}{4k^2 + 3} \right) \right \rfloor

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 2034.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Efren Medallo
Aug 22, 2017

Let us rewrite the summation in consideration as follows:

k = 0 a r c t a n ( 4 4 k 2 + 3 ) = a r c t a n ( 4 3 ) + k = 1 a r c t a n ( 4 4 k 2 + 3 ) \displaystyle\sum\limits_{k=0}^{\infty} \mathrm{arctan} \big( \frac{ 4}{4k^2 + 3} \big) = \mathrm{arctan}\big( \frac{4}{3} \big) + \displaystyle\sum\limits_{k=1}^{\infty} \mathrm{arctan} \big( \frac{ 4}{4k^2 + 3} \big)

We could manipulate the RHS as follows:

= a r c t a n ( 4 3 ) + k = 1 a r c t a n ( 1 k 2 + 3 4 ) = \mathrm{arctan}\big( \frac{4}{3} \big) + \displaystyle\sum\limits_{k=1}^{\infty} \mathrm{arctan} \bigg( \frac{ 1}{k^2 + \frac{3}{4}} \bigg)

= a r c t a n ( 4 3 ) + k = 1 a r c t a n ( 1 k 2 1 4 + 1 ) = \mathrm{arctan}\big( \frac{4}{3} \big) + \displaystyle\sum\limits_{k=1}^{\infty} \mathrm{arctan} \bigg( \frac{ 1}{k^2 - \frac{1}{4} + 1} \bigg)

= a r c t a n ( 4 3 ) + k = 1 a r c t a n ( 1 [ k 1 2 ] [ k + 1 2 ] + 1 ) = \mathrm{arctan}\big( \frac{4}{3} \big) + \displaystyle\sum\limits_{k=1}^{\infty} \mathrm{arctan} \bigg( \frac{ 1}{[k - \frac{1}{2}][k + \frac{1}{2}] + 1} \bigg)

= a r c t a n ( 4 3 ) + k = 1 a r c t a n ( [ k + 1 2 ] [ k 1 2 ] [ k 1 2 ] [ k + 1 2 ] + 1 ) = \mathrm{arctan}\big( \frac{4}{3} \big) + \displaystyle\sum\limits_{k=1}^{\infty} \mathrm{arctan} \bigg( \frac{ [k + \frac{1}{2}] - [k- \frac{1}{2}]}{[k - \frac{1}{2}][k + \frac{1}{2}] + 1} \bigg)

We can now use the sum/difference identity for arctangents, which is as follows:

a r c t a n ( A ) a r c t a n ( B ) = a r c t a n ( A B 1 + A B ) \mathrm{arctan}(A) - \mathrm{arctan}(B) = \mathrm{arctan}\bigg( \frac{A-B}{1+ AB} \bigg)

Since we have A = k + 1 2 A = k + \frac{1}{2} and B = k 1 2 B = k - \frac{1}{2} , we further simplify the RHS as

= a r c t a n ( 4 3 ) + k = 1 [ a r c t a n ( k + 1 2 ) a r c t a n ( k 1 2 ) ] = \mathrm{arctan}\big( \frac{4}{3} \big) + \displaystyle\sum\limits_{k=1}^{\infty} \bigg[ \mathrm{arctan} \big( k + \frac{1}{2} \big) - \mathrm{arctan} \big( k - \frac{1}{2} \big) \bigg]

which, when evaluated, turns out to be a telescoping series.

This will further lead us to

= a r c t a n ( 4 3 ) + π 2 a r c t a n ( 1 2 ) = \mathrm{arctan}\big( \frac{4}{3} \big) + \frac{ \pi}{2} - \mathrm{arctan} \big( \frac{1}{2} \big)

2.03444 \approx 2.03444

Thus giving us the answer to our question, 2034 \boxed {2034} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...