The area of a regular triangle.

Geometry Level 2

There is a regular triangle whose length of a side is π \pi .

Then what is the area of the regular triangle?

π 3 4 \displaystyle \frac { \pi \sqrt { 3 } } { 4 } . π 2 3 4 \displaystyle \frac { \pi ^ { 2 } \sqrt { 3 } } { 4 } . π 2 3 2 \displaystyle \frac { \pi ^ { 2 } \sqrt { 3 } } { 2 } . π 3 2 \displaystyle \frac { \pi \sqrt { 3 } } { 2 } . π 3 3 \displaystyle \frac { \pi \sqrt { 3 } } { 3 } . π 2 3 3 \displaystyle \frac { \pi ^ { 2 } \sqrt { 3 } } { 3 } . π 3 \displaystyle \frac { \pi } { 3 } . 3 π \displaystyle 3 \pi .

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

. .
Mar 12, 2021

We can fold the regular triangle into two congruent right triangles.

Then, the side which got folded is π 2 \displaystyle \frac \pi 2 .

We can use the Pythagorean theory.

If I let the height of the right triangle to a a , then a 2 + ( π 2 ) 2 = π 2 \displaystyle a ^ { 2 } + \left ( \frac { \pi } { 2 } \right ) ^ { 2 } = \pi ^ { 2 } .

Then a 2 = π 2 × 3 4 \displaystyle a ^ { 2 } = \frac { \pi ^ { 2 } \times 3 } { 4 } .

a = ± 3 π 2 4 \displaystyle a = \pm \sqrt { \frac { 3 \pi ^ { 2 } } { 4 } } , but the length cannot be negative, so a = 3 π 2 \displaystyle a = \frac { \sqrt { 3 } \pi } { 2 } .

Then the area of a triangle is d × h 2 \displaystyle \frac { d \times h } { 2 } , d d is a down side of the triangle, and h h is a height of the triangle.

We get π ( 3 π 2 ) 2 \displaystyle \frac { \pi ( \frac { \sqrt { 3 } \pi } { 2 } ) } { 2 } = π 2 3 2 2 = \displaystyle = \frac { \frac { \pi ^ { 2 } \sqrt { 3 } } { 2 } } { 2 } = π 2 3 2 ÷ 2 = \displaystyle \frac { \pi ^ { 2 } \sqrt { 3 } } { 2 } \div 2 = π 2 3 2 × 1 2 = \displaystyle \frac { \pi ^ { 2 } \sqrt { 3 } } { 2 } \times \frac { 1 } { 2 } = π 2 3 4 \boxed { \displaystyle \frac { \pi ^ { 2 } \sqrt { 3 } } { 4 } } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...