The Area Of My Heart

Calculus Level 4

In the heart curve x 2 + ( 5 y 4 x ) 2 = 1 x^2 + \left(\dfrac{5y}{4} - \sqrt{|x|}\right)^2 = 1 above, O B \overline{\rm OB} goes from the positive y y intercept to the positive x x intercept and O C \overline{\rm OC} goes from the positive y y intercept to the negative x x intercept and points O , B , D , C O,B,D,C encloses the pink region.

The enclosed blue region is bounded by the upper portion of the curve x 2 + ( 5 y 4 x ) 2 = 1 x^2 + \left(\dfrac{5y}{4} - \sqrt{|x|}\right)^2 = 1 and the line A E AE .

Let A T o t a l A_{Total} be the total area of the blue and pink region as described above.

If A T o t a l A_{Total} can be expressed as a 2 b ( arcsin ( ϕ 1 ) 1 c ( ϕ 1 ) c a + ( ϕ 1 ) + π a a c ) \dfrac{a^2}{b}\left(\arcsin(\phi - 1) - \dfrac 1c (\phi - 1)^{\frac{c}{a}} + (\phi - 1) + \dfrac{\pi}{a} - \dfrac{a}{c}\right) , where a , b a,b and c c are coprime positive integers and ϕ \phi is the golden ratio, find a + b + c a + b + c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 14, 2019

For the red region:

For the x x intercept of y 1 = 4 5 ( x 1 x 2 ) y_{1} = \dfrac{4}{5} (\sqrt{x} - \sqrt{1 - x^2}) we obtain:

x 2 + x 1 = 0 x = 1 ± 5 2 x^2 + x - 1 = 0 \implies x = \dfrac{-1 \pm \sqrt{5}}{2} , since x = 1 + 5 2 = ϕ x = -\dfrac{1 + \sqrt{5}}{2} = -\phi results in a complex valued square root x = 5 1 2 \implies x = \dfrac{\sqrt{5} - 1}{2} is the x intercept of y 1 = 4 5 ( x 1 x 2 ) y_{1} = \dfrac{4}{5} (\sqrt{x} - \sqrt{1 - x^2}) .

The equation of the line passing thru O : ( 0 , 4 5 ) O: (0,\dfrac{4}{5}) and B : ( 5 1 2 , 0 ) B: (\dfrac{\sqrt{5} - 1}{2},0) is:

y = 4 5 ( 2 x 5 1 + 1 ) y = \dfrac{4}{5} (\dfrac{-2x}{\sqrt{5} - 1} + 1) \implies

A r e d = 4 5 0 5 1 2 A_{red} = \dfrac{4}{5} \int_{0}^{\frac{\sqrt{5} - 1}{2}} ( 1 2 x 5 1 + 1 x 2 x ) d x (1 - \dfrac{2x}{\sqrt{5} - 1} + \sqrt{1 - x^2} - \sqrt{x}) dx

For 1 x 2 d x \int \sqrt{1 - x^2} dx

Let x = sin ( θ ) d x = cos ( θ ) 1 x 2 d x = cos 2 ( θ ) d θ = 1 2 ( θ + sin ( θ ) cos ( θ ) ) x = \sin(\theta) \implies dx = \cos(\theta) \implies \int \sqrt{1 - x^2} dx = \int \cos^2(\theta) d\theta = \dfrac{1}{2}(\theta + \sin(\theta)\cos(\theta)) .

Let β = 5 1 2 \beta = \dfrac{\sqrt{5} - 1}{2}

0 5 1 2 1 x 2 d x = 1 2 arcsin ( β ) + 1 2 β 3 2 \implies \int_{0}^{\frac{\sqrt{5} - 1}{2}} \sqrt{1 - x^2} dx = \dfrac{1}{2}\arcsin(\beta) + \dfrac{1}{2} \beta^{\frac{3}{2}} \implies A r e d = 4 5 ( 1 2 arcsin ( β ) + 1 2 β 3 2 + ( 2 3 x 3 2 + x x 2 5 1 ) 0 5 1 2 ) = A_{red} = \dfrac{4}{5} (\dfrac{1}{2}\arcsin(\beta) + \dfrac{1}{2} \beta^{\frac{3}{2}} + (-\dfrac{2}{3} x^{\frac{3}{2}} + x - \dfrac{x^2}{\sqrt{5} - 1})|_{0}^{\frac{\sqrt{5} - 1}{2}} ) = 2 5 ( arcsin ( β ) 1 3 β 3 2 + β ) \dfrac{2}{5}(\arcsin(\beta) - \dfrac{1}{3}\beta^{\frac{3}{2}} + \beta)

β = 5 1 2 = 1 + 5 2 1 = ϕ 1 A r e d = 2 5 ( arcsin ( ϕ 1 ) 1 3 ( ϕ 1 ) 3 2 + ϕ 1 ) \beta = \dfrac{\sqrt{5} - 1}{2} = \dfrac{1 + \sqrt{5}}{2} - 1 = \phi - 1 \implies A_{red} = \dfrac{2}{5}(\arcsin(\phi - 1) - \dfrac{1}{3}(\phi - 1)^{\frac{3}{2}} + \phi - 1) \implies A 1 = 2 A r e d = 4 5 ( arcsin ( ϕ 1 ) 1 3 ( ϕ 1 ) 3 2 + ϕ 1 ) A_{1} = 2A_{red} = \boxed{\dfrac{4}{5}(\arcsin(\phi - 1) - \dfrac{1}{3}(\phi - 1)^{\frac{3}{2}} + \phi - 1)}

For blue region:

A b l u e = 4 5 0 1 ( 1 x 2 + x 1 ) d x A_{blue} = \dfrac{4}{5}\displaystyle\int_{0}^{1} (\sqrt{1 - x^2} + \sqrt{x} - 1) dx

L e t x = sin ( θ ) d x = cos ( θ ) d θ Let x = \sin(\theta) \implies dx = \cos(\theta) d\theta \implies

A b l u e = 4 5 ( 1 2 ( θ + 1 2 sin ( 2 θ ) ) 0 π 2 + A_{blue} = \dfrac{4}{5}(\dfrac{1}{2}(\theta + \dfrac{1}{2}\sin(2\theta))|_{0}^{\frac{\pi}{2}} + ( 2 3 x 3 2 x ) 0 1 ) ) (\dfrac{2}{3}x^{\frac{3}{2}} - x)|_{0}^{1})) = 4 5 ( π 4 1 3 ) = \dfrac{4}{5}(\dfrac{\pi}{4} - \dfrac{1}{3})

A 2 = 2 A b l u e = 8 5 ( π 4 1 3 ) A_{2} = 2A_{blue} = \boxed{\dfrac{8}{5}(\dfrac{\pi}{4} - \dfrac{1}{3})}

\implies

A T o t a l = A 1 + A 2 = 4 5 ( arcsin ( ϕ 1 ) 1 3 ( ϕ 1 ) 3 2 + ϕ 1 + π 2 2 3 ) = A_{Total} = A_{1} + A_{2} = \dfrac{4}{5}(\arcsin(\phi - 1) - \dfrac{1}{3}(\phi - 1)^{\frac{3}{2}} + \phi - 1 + \dfrac{\pi}{2} - \dfrac{2}{3}) =

a 2 b ( arcsin ( ϕ 1 ) 1 c ( ϕ 1 ) c a + ( ϕ 1 ) + π a a c ) \dfrac{a^2}{b}(\arcsin(\phi - 1) - \dfrac{1}{c}(\phi - 1)^{\dfrac{c}{a}} + (\phi - 1) + \dfrac{\pi}{a} - \dfrac{a}{c}) \implies

a + b + c = 10 a + b + c = \boxed{10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...