The arithmetic mean of triangles

Geometry Level 2

Consider a series of triangles A 1 B 1 C 1 , A 2 B 2 C 2 , A 3 B 3 C 3 , , A n B n C n \triangle A_1B_1C_1,\ \triangle A_2B_2C_2,\ \triangle A_3B_3C_3,\ \ldots ,\ \triangle A_nB_nC_n and so on.

Let a n , b n , c n a_n,\ b_n,\ c_n be the side lengths of A n B n C n \triangle A_nB_nC_n and S n S_n be the area of A n B n C n \triangle A_nB_nC_n for positive integer n 1 n \geq 1 .

If b 1 c 1 b_1 \neq c_1 , b 1 + c 1 = 2 a 1 b_1+c_1=2a_1 , a n + 1 = a n a_{n+1}=a_n , b n + 1 = c n + a n 2 b_{n+1}=\dfrac{c_n+a_n}{2} , c n + 1 = b n + a n 2 c_{n+1}=\dfrac{b_n+a_n}{2} for n 2 n \geq 2 .

For sequence { S n } , { S 2 n 1 } , { S 2 n } \{S_n\},\ \{S_{2n-1}\},\ \{S_{2n}\} , which of the following is true for all positive integer n 1 n \geq 1 ?

If you know what it means, this is just a level 1 problem to answer. But the proof would be quite interesting.

{ S n } \{S_n\} decreases. { S 2 n 1 } \{S_{2n-1}\} decreases, { S 2 n } \{S_{2n}\} increases. { S 2 n 1 } \{S_{2n-1}\} increases, { S 2 n } \{S_{2n}\} decreases. { S n } \{S_n\} increases.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

It is given that a n + 1 = a n , n 2 a_{n+1} = a_n\;,n\geq 2 . Thus by induction it can be proved that

a n = a 1 , n 2 Eq. 1 a_n = a_1\;,n\geq 2 \hspace{20pt}\cdots \text{Eq. }1

b 1 + c 1 = 2 a 1 Eq. 2 b_1 + c_1 = 2a_1 \hspace{20pt}\cdots \text{Eq. }2

b n + 1 = a n + c n 2 b_{n+1} = \Large\frac{a_n + c_n}{2} Eq. 3 \hspace{20pt}\cdots \text{Eq. }3

c n + 1 = a n + b n 2 c_{n+1} = \Large\frac{a_n + b_n}{2} Eq. 4 \hspace{20pt}\cdots \text{Eq. }4

Now we will prove that b n + c n = 2 a 1 , n 1 b_n + c_n = 2a_1\;,\; n\geq 1 by mathematical induction.

We see that it is true for n = 1 n = 1 as by Eq. 2 \text{Eq. }2 . Let it be true for n = k n = k .

b k + c k = 2 a 1 \Rightarrow b_k + c_k = 2a_1

Adding Eq. 3 \text{Eq. }3 and Eq. 4 \text{Eq. }4 after replacing n n with k k we get

b k + 1 + c k + 1 = 2 a k + b k + c k 2 \hspace{13pt} b_{k+1} + c_{k+1} = \Large\frac{2a_k + b_k + c_k}{2}

b k + 1 + c k + 1 = a k + b k + c k 2 \Rightarrow b_{k+1} + c_{k+1} = a_k + \Large\frac{b_k + c_k}{2}

b k + 1 + c k + 1 = a 1 + 2 a 1 2 \Rightarrow b_{k+1} + c_{k+1} = a_1+ \Large\frac{2a_1}{2}\hspace{20pt} [ a k = a 1 [\because a_k = a_1 and b k + c k = 2 a 1 ] b_k + c_k = 2a_1]

b k + 1 + c k + 1 = a 1 + a 1 = 2 a 1 \Rightarrow b_{k+1} + c_{k+1} = a_1 + a_1 = 2a_1

We see that whenever that identity is true for n = k n = k , it is true for n = k + 1 n = k+1 . Hence it is true for all n N n \in \mathbb{N}

So, b n + c n = 2 a 1 b_n + c_n = 2a_1

a n + b n + c n = a n + 2 a 1 = 3 a 1 [ a n = a 1 ] \Rightarrow a_n + b_n + c_n = a_n + 2a_1 = 3a_1\hspace{20pt}[\because a_n = a_1]

\Rightarrow Perimeter of A n B n C n \triangle A_nB_nC_n is constant over n N n \in \mathbb{N} . So its semiperimeter is also constant. Let the semiperimeter be s s . Then

s = 3 a 1 2 s = \Large\frac{3a_1}{2} Eq. 5 \hspace{20pt}\cdots\text{Eq. }5 and

s a n = 3 a 1 2 s - a_n = \Large\frac{3a_1}{2} a n - a_n

s a n = 3 a 1 2 s - a_n = \Large\frac{3a_1}{2} a 1 - a_1

s a n = a 1 2 s - a_n = \Large\frac{a_1}{2} Eq. 6 \hspace{20pt}\cdots\text{Eq. }6

Multiplying Eq. 3 \text{Eq. }3 and Eq. 4 \text{Eq. 4} we get

b n + 1 c n + 1 = ( a n + c n ) ( a n + b n ) 4 b_{n+1}c_{n+1} = \Large\frac{(a_n + c_n)(a_n + b_n)}{4}

= a n 2 4 \hspace{40pt} = \Large\frac{a_{n}^2}{4} + ( b n + c n ) a n 4 + \Large\frac{(b_n + c_n)a_n}{4} + b n c n 4 + \Large\frac{b_nc_n}{4}

= a 1 2 4 \hspace{40pt} = \Large\frac{a_{1}^2}{4} + 2 a 1 2 4 + \Large\frac{2a_1^2}{4} + b n c n 4 + \Large\frac{b_nc_n}{4}\hspace{20pt} [ a n = a 1 [\because a_n = a_1 and b n + c n = 2 a 1 ] b_n + c_n = 2a_1]

= 3 a 1 2 4 \hspace{40pt} = \Large\frac{3a_{1}^2}{4} + b n c n 4 + \Large\frac{b_nc_n}{4}

Recursively writing b n c n b_nc_n in terms of b n 1 c n 1 b_{n-1}c_{n-1} and putting in the above equation we get

b n + 1 c n + 1 = 3 a 1 2 4 b_{n+1}c_{n+1} = \Large\frac{3a_{1}^2}{4} + 3 a 1 2 4 + b n 1 c n 1 4 4 + \LARGE\frac{\frac{3a_1^2}{4} + \frac{b_{n-1}c_{n-1}}{4}}{4}

= 3 a 1 2 4 \hspace{40pt} = \Large\frac{3a_1^2}{4} + 3 a 1 2 4 2 + \Large\frac{3a_1^2}{4^2} + b n 1 c n 1 4 2 + \Large\frac{b_{n-1}c_{n-1}}{4^2}

Recursively writing again and again we can get

b n + 1 c n + 1 = 3 a 1 2 4 b_{n+1}c_{n+1} = \Large\frac{3a_1^2}{4} + 3 a 1 2 4 2 + \Large\frac{3a_1^2}{4^2} + 3 a 1 2 4 3 + \Large\frac{3a_1^2}{4^3} + + 3 a 1 2 4 n 1 + \cdots + \Large\frac{3a_1^2}{4^{n-1}} + 3 a 1 2 4 n + \Large\frac{3a_1^2}{4^n} + b 1 c 1 4 n + \Large\frac{b_1c_1}{4^n}

= 3 a 1 2 ( 1 4 \hspace{40pt} = 3a_1^2\Big(\Large\frac{1}{4} + 1 4 2 + \Large\frac{1}{4^2} + 1 4 3 + \Large\frac{1}{4^3} + + 1 4 n 1 + \cdots + \Large\frac{1}{4^{n-1}} + 1 4 n + \Large\frac{1}{4^n} ) + b 1 c 1 4 n \Big) + \Large\frac{b_1c_1}{4^n}

= a 1 2 ( 1 1 4 n \hspace{40pt} = a_1^2\Big(1 - \Large\frac{1}{4^n} ) + b 1 c 1 4 n \Big) + \Large\frac{b_1c_1}{4^n}

Replacing n n by n 1 n - 1 in the above equation we get

b n c n = a 1 2 ( 1 1 4 n 1 b_nc_n = a_1^2\Big(1 - \Large\frac{1}{4^{n-1}} ) + b 1 c 1 4 n 1 \Big) + \Large\frac{b_1c_1}{4^{n-1}} Eq. 7 \hspace{20pt}\cdots \text{Eq. }7

Area of A n B n C n \triangle A_nB_nC_n is S n S_n . Then

S n = s ( s a n ) ( s b n ) ( s c n ) S_n = \sqrt{s(s - a_n)(s - b_n)(s - c_n)}

S n 2 = 3 a 1 2 a 1 2 \Rightarrow S_n^2 = \Large\frac{3a_1}{2}\frac{a_1}{2} ( s b n ) ( s c n ) \cdot (s - b_n)(s - c_n) [ \hspace{20pt}[ Using Eq. 5 \text{Eq. }5 and Eq. 6 ] \text{Eq. }6]

S n 2 = 3 a 1 2 4 \Rightarrow S_n^2 = \Large\frac{3a_1^2}{4} ( s 2 ( b n + c n ) s + b n c n ) \Big(s^2 - (b_n + c_n)s + b_nc_n\Big)

S n 2 = 3 a 1 2 4 \Rightarrow S_n^2 = \Large\frac{3a_1^2}{4} ( 9 a 1 2 4 \Big(\Large\frac{9a_1^2}{4} 2 a 1 3 a 1 2 - 2a_1\cdot \Large\frac{3a_1}{2} + b n c n ) + b_nc_n\Big)

S n 2 = 3 a 1 2 4 \Rightarrow S_n^2 = \Large\frac{3a_1^2}{4} ( b n c n 3 a 1 2 4 \Big(b_nc_n - \Large\frac{3a_1^2}{4} ) \Big)

Putting b n c n b_nc_n from Eq. 7 \text{Eq. }7 in the above equation and simplifying we get

S n 2 = 3 a 1 4 16 S_n^2 = \Large\frac{3a_1^4}{16} 3 a 1 2 ( a 1 2 b 1 c 1 ) 4 n - \Large\frac{3a_1^2(a_1^2 - b_1c_1)}{4^n}

By AM - GM inequality

b 1 + c 1 2 \Large\frac{b_1 + c_1}{2} b 1 c 1 \geq \sqrt{b_1c_1}

a 1 2 b 1 c 1 a_1^2 \geq b_1c_1

So we see that as n n increases S n 2 S_n^2 increases S n \Rightarrow S_n increases.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...