∫ 0 1 x 2 − 2 x cos θ + 1 1 d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
U forget a 2 (Pi- theta) /2sin(theta)
Let x 2 − 2 x cos θ + 1 = u 2 . Then x , 1 and u are the three sides of a triangle because they follow the cosine rule , where angle θ is opposite side u . Let the angle opposite x be ϕ . Then by sine rule , we have:
sin ϕ x = sin θ u = sin ( π − θ − ϕ ) 1 = sin ( θ + ϕ ) 1
x = sin ( θ + ϕ ) sin ϕ , when x = 0 , ϕ = 0 and x = 1 , ϕ = 2 π − θ .
u = sin ( θ + ϕ ) sin θ
⟹ d x = sin 2 ( θ + ϕ ) cos ϕ sin ( θ + ϕ ) − sin ϕ cos ( θ + ϕ ) d ϕ = sin 2 ( θ + ϕ ) sin θ d ϕ
Therefore,
I = ∫ 0 1 x 2 − 2 x cos θ + 1 1 d x = ∫ 0 1 u 2 1 d x = ∫ 0 2 π − θ sin 2 θ sin 2 ( θ + ϕ ) ⋅ sin 2 ( θ + ϕ ) sin θ d ϕ = ∫ 0 2 π − θ sin θ 1 d ϕ = 2 sin θ π − θ
Problem Loading...
Note Loading...
Set Loading...
∫ 0 1 x 2 − 2 x cos θ + 1 1 d x = ∫ 0 1 ( x − cos θ ) 2 + 1 − cos 2 θ 1 d x = ∫ 0 1 sin 2 θ + ( x − cos θ ) 2 1 d x = [ sin θ 1 tan − 1 ( sin θ x − cos θ ) ] 0 1 = sin θ 1 tan − 1 ( sin θ 1 − cos θ ) − sin θ 1 tan − 1 ( sin θ − cos θ ) = sin θ 1 [ tan − 1 ( 2 sin 2 θ cos 2 θ 2 sin 2 2 θ ) + tan − 1 ( cot θ ) ] = sin θ 1 [ tan − 1 ( tan 2 θ ) + tan − 1 ( tan ( 2 π − θ ) ) ] = sin θ 1 ( 2 θ + 2 π − θ ) = 2 sin θ π − θ using ∫ a 2 + u 2 1 d u = a 1 tan − 1 a u + C using cos 2 u = 1 − 2 sin 2 u and sin 2 u = 2 sin u cos u