the beauty in integration

Level 1

0 1 1 x 2 2 x cos θ + 1 d x = ? \large \int_0^1 \frac 1{x^2-2x\cos \theta + 1} dx = ?

π θ sin θ \frac {π - θ}{\sin θ} π θ cos θ \frac {π - θ}{\cos θ} 2 ( π θ ) sin θ \frac {2(π - θ)}{\sin θ} π θ 2 sin θ \frac {π - θ}{2 \sin θ}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Joseph Newton
May 4, 2018

0 1 1 x 2 2 x cos θ + 1 d x = 0 1 1 ( x cos θ ) 2 + 1 cos 2 θ d x = 0 1 1 sin 2 θ + ( x cos θ ) 2 d x = [ 1 sin θ tan 1 ( x cos θ sin θ ) ] 0 1 using 1 a 2 + u 2 d u = 1 a tan 1 u a + C = 1 sin θ tan 1 ( 1 cos θ sin θ ) 1 sin θ tan 1 ( cos θ sin θ ) = 1 sin θ [ tan 1 ( 2 sin 2 θ 2 2 sin θ 2 cos θ 2 ) + tan 1 ( cot θ ) ] using cos 2 u = 1 2 sin 2 u and sin 2 u = 2 sin u cos u = 1 sin θ [ tan 1 ( tan θ 2 ) + tan 1 ( tan ( π 2 θ ) ) ] = 1 sin θ ( θ 2 + π 2 θ ) = π θ 2 sin θ \begin{aligned}\int_0^1\frac1{x^2-2x\cos\theta+1}dx&=\int_0^1\frac1{(x-\cos\theta)^2+1-\cos^2\theta}dx\\ &=\int_0^1\frac1{\sin^2\theta+(x-\cos\theta)^2}dx\\ &=\left[\frac{1}{\sin\theta}\tan^{-1}\left(\frac{x-\cos\theta}{\sin\theta}\right)\right]_0^1&\small\text{using }\color{#3D99F6}\int\frac{1}{a^2+u^2}du=\frac{1}{a}\tan^{-1}\frac{u}{a}+C\\ &=\frac{1}{\sin\theta}\tan^{-1}\left(\frac{1-\cos\theta}{\sin\theta}\right)-\frac{1}{\sin\theta}\tan^{-1}\left(\frac{-\cos\theta}{\sin\theta}\right)\\ &=\frac{1}{\sin\theta}\left[\tan^{-1}\left(\frac{2\sin^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}\right)+\tan^{-1}\left(\cot\theta\right)\right]&\small\text{using }\color{#3D99F6}\cos2u=1-2\sin^2u\color{#333333}\text{ and }\color{#3D99F6}\sin2u=2\sin u\cos u\\ &=\frac{1}{\sin\theta}\left[\tan^{-1}\left(\tan\frac{\theta}{2}\right)+\tan^{-1}\left(\tan\left(\frac{\pi}{2}-\theta\right)\right)\right]\\ &=\frac{1}{\sin\theta}\left(\frac{\theta}{2}+\frac{\pi}{2}-\theta\right)\\ &=\boxed{\frac{\pi-\theta}{2\sin\theta}}\end{aligned}

U forget a 2 (Pi- theta) /2sin(theta)

Ahpa Tsum - 3 years, 1 month ago

Log in to reply

Fixed, thanks for letting me know.

Joseph Newton - 3 years, 1 month ago

Let x 2 2 x cos θ + 1 = u 2 x^2 - 2x \cos \theta + 1 = u^2 . Then x x , 1 1 and u u are the three sides of a triangle because they follow the cosine rule , where angle θ \theta is opposite side u u . Let the angle opposite x x be ϕ \phi . Then by sine rule , we have:

x sin ϕ = u sin θ = 1 sin ( π θ ϕ ) = 1 sin ( θ + ϕ ) \begin{aligned} \frac x{\sin \phi} & = \frac u{\sin \theta} = \frac 1{\sin (\pi - \theta - \phi)} = \frac 1{\sin (\theta + \phi)} \end{aligned}

x = sin ϕ sin ( θ + ϕ ) \begin{aligned} x & = \frac {\sin \phi}{\sin (\theta + \phi)} \end{aligned} , when x = 0 x = 0 , ϕ = 0 \phi = 0 and x = 1 x=1 , ϕ = π θ 2 \phi = \dfrac {\pi - \theta}2 .

u = sin θ sin ( θ + ϕ ) \begin{aligned} u = \frac {\sin \theta}{\sin (\theta + \phi)}\end{aligned}

d x = cos ϕ sin ( θ + ϕ ) sin ϕ cos ( θ + ϕ ) sin 2 ( θ + ϕ ) d ϕ = sin θ sin 2 ( θ + ϕ ) d ϕ \begin{aligned} \implies dx = \frac {\cos \phi \sin (\theta + \phi) - \sin \phi \cos (\theta + \phi)}{\sin^2 (\theta + \phi)} d \phi = \frac {\sin \theta}{\sin^2 (\theta + \phi)} d \phi \end{aligned}

Therefore,

I = 0 1 1 x 2 2 x cos θ + 1 d x = 0 1 1 u 2 d x = 0 π θ 2 sin 2 ( θ + ϕ ) sin 2 θ sin θ sin 2 ( θ + ϕ ) d ϕ = 0 π θ 2 1 sin θ d ϕ = π θ 2 sin θ \begin{aligned} I & = \int_0^1 \frac 1{x^2 - 2x \cos \theta + 1} dx \\ & = \int_0^1 \frac 1{u^2} dx \\ & = \int_0^{\frac {\pi - \theta}2} \frac {\sin^2 (\theta + \phi)}{\sin^2 \theta} \cdot \frac {\sin \theta}{\sin^2 (\theta + \phi)} d \phi \\ & = \int_0^{\frac {\pi - \theta}2} \frac 1{\sin \theta} d \phi \\ & = \boxed{\dfrac {\pi - \theta}{2\sin \theta}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...