The Beauty Of Complex Inequalities

Geometry Level pending

If s i n θ 1 z 4 + s i n θ 2 z 3 + s i n θ 3 z 2 + s i n θ 4 z + s i n θ 5 sin \theta_1z^4+sin \theta_2z^3+sin \theta_3z^2+sin \theta_4z+sin \theta_5 =2 then |z|>3/k .Find k if it is an integer.

P.S:All the sines lie in the range [ 0 , 1 / 2 ] [0,1/2]


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sanchayan Dutta
Sep 19, 2015

s i n θ 1 z 4 + s i n θ 2 z 3 + s i n θ 3 z 2 + s i n θ 4 z + s i n θ 5 sin \theta_1z^4+sin \theta_2z^3+sin \theta_3z^2+sin \theta_4z+sin \theta_5 =2

or,2<= s i n θ 1 z 4 + s i n θ 2 z 3 + s i n θ 3 z 2 + s i n θ 4 z + s i n θ 5 |sin \theta_1z^4|+|sin \theta_2z^3|+|sin \theta_3z^2|+|sin \theta_4z|+|sin \theta_5|

Since the sines lie in the range [0,1/2] the inequality becomes 2<=(1/2)( z 4 + z 3 + z 2 + z + 1 |z|^4+|z|^3+|z|^2+|z|+1 ) hence 3<= z 4 + z 3 + z 2 + z |z|^4+|z|^3+|z|^2+|z| or,3< z + z 2 + z 3 + z 4 + z 5 + . . . |z|+|z|^2+|z|^3+|z|^4+|z|^5+... or, 3 < z 1 z 3<\frac{|z|}{|1-z|} or |z|>3/4.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...