Let , and be real numbers. We say that is a better estimate of than if is fulfilled.
Which of the following is the best estimate of ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Solution:
Let a be a real number such that 9 a = 6 8 9 1 6 7 9 . Taking lo g on both sides yields
a = lo g 9 1 6 7 9 lo g 6 8 9 ≈ 4 9 9 3 . 8 7 7 .
Clearly, 4 9 0 0 < a < 4 9 9 5 , for which we can eliminate two choices, 9 4 9 9 6 and 9 4 9 9 7 . Now we only compare 9 4 9 0 0 and 9 4 9 9 5 .
9 a − 9 4 9 0 0 9 4 9 9 5 − 9 a = 9 a − 4 9 0 0 − 1 9 9 5 − 9 a − 4 9 0 0 > 9 a − 4 9 0 0 9 9 5 − 9 a − 4 9 0 0 = 9 4 9 9 5 − a − 1 > 1
Now, ∣ 9 4 9 9 5 − 6 8 9 1 6 7 9 ∣ > ∣ 6 8 9 1 6 7 9 − 9 4 9 0 0 ∣ and so the best estimate is 9 4 9 0 0 . []
Alternative Solution :
Let a be a real number such that 9 a = 6 8 9 1 6 7 9 . Taking lo g on both sides yields
a = lo g 9 1 6 7 9 lo g 6 8 9 ≈ 4 9 9 3 . 8 7 7 .
Clearly, 4 9 0 0 < a < 4 9 9 5 . So 9 4 9 0 0 < 9 a < 9 4 9 9 5 , for which we can eliminate two choices 9 4 9 9 6 and 9 4 9 9 7 . Now we consider the arithmetic mean of 9 4 9 9 5 and 9 4 9 0 0 :
lo g 9 ( 2 9 4 9 0 0 + 9 4 9 9 5 ) = lo g 9 ( 2 9 4 9 0 0 ( 1 + 9 9 5 ) ) = lo g 9 9 4 9 0 0 + lo g 9 ( 1 + 9 9 5 ) − lo g 9 2 > 4 9 0 0 + lo g 9 9 9 5 − lo g 9 2 = 4 9 9 5 − lo g 9 lo g 2 ≈ 4 9 9 4 . 6 8 > a
Hence
9 4 9 0 0 < 9 a < 2 9 4 9 0 0 + 9 4 9 9 5 .
This means
∣ 9 4 9 9 5 − 6 8 9 1 6 7 9 ∣ > ∣ 6 8 9 1 6 7 9 − 9 4 9 0 0 ∣ and so the best estimate is 9 4 9 0 0 . []