The Cardinal Sine Evaluation - Part 2

Calculus Level 4

0 π 2 f ( x ) f ( π 2 x ) d x \large \displaystyle \int _{ 0 }^{ \frac { \pi }{ 2 } }{ f\left( x \right) f\left( \frac { \pi }{ 2 } -x \right) } \, dx

In mathematics the cardinal sine function or sinc ( x ) \text{sinc}(x) is defined as f ( x ) = sin ( x ) x f(x) = \frac {\sin(x)}x .

Which of these answer choices represent the value of above expression?


This problem is orignal. Try the sister problem: The Cardinal Sine Evaluation .
None of these choices π 2 0 π 2 f ( x ) d x \frac { \pi }{ 2 } \int _{ 0 }^{ \frac { \pi }{ 2 } }{ f\left( x \right) \, dx } π 4 0 π 2 f ( x ) d x \frac { \pi }{ 4 } \int _{ 0 }^{ \frac { \pi }{ 2 } }{ f\left( x \right) \, dx } π 0 π f ( x ) d x \pi \int _{ 0 }^{ \pi }{ f\left( x \right) \, dx } 2 π 0 π f ( x ) d x \frac { 2 }{ \pi } \int _{ 0 }^{ \pi }{ f\left( x \right) \, dx } 2 π 0 π 2 f ( x ) d x \frac { 2 }{ \pi } \int _{ 0 }^{ \frac { \pi }{ 2 } }{ f\left( x \right)\, dx } π 2 0 π f ( x ) d x \frac { \pi }{ 2 } \int _{ 0 }^{ \pi }{ f\left( x \right) \, dx } π 0 π 2 f ( x ) d x \pi \int _{ 0 }^{ \frac { \pi }{ 2 } }{ f\left( x \right) \, dx }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

T h e i n t e g r a l c a n b e w r i t t e n a s I = 0 π 2 sin ( x ) cos ( x ) x ( π 2 x ) d x I = 0 π 2 sin ( 2 x ) x ( π 2 x ) . d x P u t t i n g 2 x = t w e g e t , I = 0 π sin ( t ) t ( π t ) . d t I = 1 π 0 π ( s i n ( t ) t + s i n ( t ) π t ) . d t U s i n g 0 a f ( x ) . d x = 0 a f ( a x ) . d x T h e a b o v e e x p r e s s i o n c a n b e w r i t t e n a s I = 2 π 0 π f ( x ) . d x The\quad integral\quad can\quad be\quad written\quad as\\ I\quad =\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \sin { (x) } \cos { (x) } }{ x(\frac { \pi }{ 2 } -x) } dx } \\ I\quad =\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \sin { (2x) } }{ x(\pi -2x) } .dx\\ } \\ Putting\quad 2x\quad =\quad t\quad we\quad get,\\ \\ I\quad =\int _{ 0 }^{ \pi }{ \frac { \sin { (t) } }{ t(\pi -t) } .dt } \quad \\ I\quad =\frac { 1 }{ \pi } \int _{ 0 }^{ \pi }{ \left( \frac { sin(t) }{ t } +\frac { sin(t) }{ \pi -t } \right) .dt } \\ Using\quad \int _{ 0 }^{ a }{ f\left( x \right) .dx } =\int _{ 0 }^{ a }{ f(a-x).dx } \\ The\quad above\quad expression\quad can\quad be\quad written\quad as\\ \quad \quad \quad \quad \quad \quad \quad \boxed { I\quad =\frac { 2 }{ \pi } \int _{ 0 }^{ \pi }{ f\left( x \right) .dx } } \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...