The case of 4 variables

Calculus Level 5

a = 1 b = 1 c = 1 d = 1 a b c d ( a + b + c + d ) ! \displaystyle \sum_{a=1}^\infty \sum_{b=1}^\infty \sum_{c=1}^\infty \sum_{d=1}^\infty \dfrac{abcd}{(a+b+c+d)!}

If the value of the sum above can be expressed as A B e \frac{A}{B}e for positive integers A A and B , B, then find A + B . A+B.


Notation: e ( 2.718 ) e\, (\approx 2.718) denotes the Euler's number .


Generalize: a 1 , a 2 , , a n = 1 a 1 a 2 a n ( a 1 + a 2 + + a n ) ! . \sum_{a_1,a_2,\cdots,a_n=1}^\infty \frac{a_1a_2\cdots a_n}{(a_1+a_2+\cdots+a_n)!}.


The answer is 2699.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I just derived an closed form for this, here

If we denote the generalised version by S S that is,

a 1 , a 2 , , a n = 1 a 1 a 2 a n ( a 1 + a 2 + + a n ) ! \displaystyle \sum_{a_1,a_2,\cdots,a_n=1}^\infty \frac{a_1a_2\cdots a_n}{(a_1+a_2+\cdots+a_n)!}

S = k = n 1 k ! ( a 1 + a 2 + + a n = k a 1 a 2 a n ) \displaystyle \begin{aligned} S &= \sum_{k=n}^\infty\frac{1}{k!}\;\left( \sum_{a_1+a_2+\cdots+a_n=k}a_1 a_2\cdots a_n\right) \end{aligned}

This was achieved by setting i = 1 n a i = k \sum_{i=1}^n a_i =k , and what remains to calculate is the inner sum enclosed by brackets.

We start by investigating the lower cases , suppose we have only two variables a 1 , a 2 a_1,a_2 with a 1 + a 2 = k a_1+a_2=k then

a 1 + a 2 = k ( a 1 a 2 ) = N = 1 k 1 N ( k N ) = k ( k 1 ) ( k + 1 ) 3 ! = ( k + 1 3 ) \displaystyle \sum_{a_1+a_2=k}(a_1 a_2) =\sum_{N=1}^{k-1} N(k-N)=\frac{k(k-1)(k+1)}{3!}=\binom{k+1}{3}

Now if we take the case of 3 3 variables where a 1 + a 2 + a 3 = k a_1+a_2+a_3=k , we can achieve the sum as :

a 1 + a 2 + a 3 = k a 1 a 2 a 3 = N = 1 k 2 N ( k + 1 N 3 ) = k ( k 1 ) ( k + 1 ) ( k 2 ) ( k + 2 ) 5 ! \displaystyle \sum_{a_1+a_2+a_3=k} a_1 a_2 a_3 = \sum_{N=1}^{k-2} N\binom{k+1-N}{3}= \frac{k(k-1)(k+1)(k-2)(k+2)}{5!}

Similarly for 4 4 variables it turns out to be ,

a 1 + a 2 + a 3 + a 4 = k a 1 a 2 a 3 a 4 = k ( k 1 ) ( k + 1 ) ( k 2 ) ( k + 2 ) ( k 3 ) ( k + 3 ) 7 ! \displaystyle \sum_{a_1+a_2+a_3+a_4=k}a_1 a_2 a_3 a_4 = \frac{k(k-1)(k+1)(k-2)(k+2)(k-3)(k+3)}{7!}

I believe for the same reason that that ,

a 1 + a 2 + + a n = k a 1 a 2 a n = k ( 2 n 1 ) ! m = 1 n 1 ( k m ) ( k + m ) \displaystyle \sum_{a_1+a_2+\cdots+a_n=k}a_1 a_2\cdots a_n = \frac{k}{(2n-1)!}\prod_{m=1}^{n-1}(k-m)(k+m)

This is indeed tough to prove by induction , but I guess it can be proved due to the great symmetry and pattern this sequence follows. I haven't tried but will try to update a proof on this asap, but till then it's reasonable to conjecture this.

Lastly we have that ,

S = k = n 1 k ! ( k ( 2 n 1 ) ! m = 1 n 1 ( k m ) ( k + m ) ) = 1 ( 2 n 1 ) ! k = n 1 k . k ! ( k ) n ( k ) n = 1 ( 2 n 1 ) ! k = n 1 k . k ! ( r = 1 n s ( n , r ) k r ) ( t = 1 n [ n t ] k t ) = 1 ( 2 n 1 ) ! r , t = 1 n ( 1 ) n + r [ n r ] [ n t ] ( k = n k r + t 1 k ! ) \displaystyle \begin{aligned} S &= \sum_{k=n}^\infty \frac{1}{k!} \left(\frac{k}{(2n-1)!}\prod_{m=1}^{n-1}(k-m)(k+m)\right) \\ &= \frac{1}{(2n-1)!}\sum_{k=n}^\infty \frac{1}{k.k!} (k)_n (k)^n \\ &= \frac{1}{(2n-1)!}\sum_{k=n}^\infty \frac{1}{k.k!} \left(\sum_{r=1}^{n}s(n,r)k^r\right) \left(\sum_{t=1}^n {n\brack t}k^t\right) \\ &= \frac{1}{(2n-1)!}\sum_{r,t=1}^n (-1)^{n+r} {n\brack r}{n\brack t}\left(\sum_{k=n}^\infty \frac{k^{r+t-1}}{k!}\right) \end{aligned}

Now using Dobinski's Formula we have finally,

a 1 , a 2 , , a n = 1 a 1 a 2 a n ( a 1 + a 2 + + a n ) ! = 1 ( 2 n 1 ) ! r = 1 n t = 1 n ( 1 ) n + r [ n r ] [ n t ] [ e B r + t 1 m = 1 n 1 m r + t 1 m ! ] \displaystyle \sum_{a_1,a_2,\cdots,a_n=1}^\infty \frac{a_1a_2\cdots a_n}{(a_1+a_2+\cdots+a_n)!}\\ = \frac{1}{(2n-1)!}\sum_{r=1}^n\sum_{t=1}^n (-1)^{n+r} {n\brack r}{n\brack t} \left[eB_{r+t-1}-\sum_{m=1}^{n-1}\frac{m^{r+t-1}}{m!}\right]

where B n B_n is the n-th Bell Number.

Firstly, if we separate the answer into two parts and take the constant term which doesn't have e e , we get the constant part as

r = 1 n t = 1 n m = 1 n 1 ( 1 ) n r [ n r ] [ n t ] m r + t 1 m ! \displaystyle \sum_{r=1}^n \sum_{t=1}^n \sum_{m=1}^{n-1} (-1)^{n-r}{n\brack r}{n\brack t}\frac{m^{r+t-1}}{m!}

A little modification and interchange of sums will give the result in terms of the Pochammer symbol.

m = 1 n 1 ( m ) n m t 1 m ! = 0 \displaystyle \sum_{m=1}^{n-1} \frac{(m)_n m^{t-1}}{m!} =0

This sum is eventually equal to zero and is easy to prove by induction.

Thus the answer is :

a 1 , a 2 , , a n = 1 a 1 a 2 a n ( a 1 + a 2 + + a n ) ! = e [ 1 ( 2 n 1 ) ! r = 1 n t = 1 n ( 1 ) n + r [ n r ] [ n t ] B r + t 1 ] \displaystyle \sum_{a_1,a_2,\cdots,a_n=1}^\infty \frac{a_1a_2\cdots a_n}{(a_1+a_2+\cdots+a_n)!}\\ = e\left[\frac{1}{(2n-1)!}\sum_{r=1}^n\sum_{t=1}^n (-1)^{n+r} {n\brack r}{n\brack t} B_{r+t-1}\right]

For n = 4 n=4 it turns out to be 179 2520 e \displaystyle \boxed{\frac{179}{2520}e} making the answer 2699 \boxed{2699}

This is a phenomenal derivation and beautiful result!

Zach Abueg - 3 years, 11 months ago

This is so good!

Kunal Gupta - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...