The Catalan Constant

Calculus Level pending

0 1 ( arcsin ( x ) x ) 2 d x = ? \int_0^1 \left( \dfrac{\arcsin (x)}x \right)^2 \, dx = \, ?

Notation: G = n = 0 ( 1 ) n ( 2 n + 1 ) 2 0.916 \displaystyle G = \sum_{n=0}^\infty \dfrac{ (-1)^n}{(2n+1)^2} \approx 0.916 denotes the Catalan's constant .

2 G π 5 2G - \frac{π}{5} G + π 2 32 G + \frac{π^2}{32} G + π 3 G + \frac{π}{3} 4 G π 2 4 4G - \frac{π^2}{4} G + π 11 G + \frac{π}{11}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let's take x = sin ( u ) x= \sin(u) , the integral becomes 0 π 2 u 2 cot ( u ) cosec ( u ) d u \displaystyle\int_0^{\frac{π}{2}} u^2 \cot(u)\cosec(u) du

Using Integrating by parts ,the integral becomes

[ u 2 cosec ( u ) ] 0 π / 2 + 2 0 π 2 u cosec ( u ) d u = π 2 4 + 0 π 2 u cosec ( u ) d u \displaystyle-[u^2 \cosec(u) ]_0^{π/2} +2\int_0^{\frac{π}{2}} u \cosec(u) du = -\dfrac{π^2}{4} + \int_0^{\frac{π}{2}} u \cosec(u) du

Using Parts again π 2 4 [ 2 u log ( cot ( u / 2 ) ) ] 0 π 2 + 2 0 π 2 log ( cot ( u 2 ) ) d u \displaystyle -\dfrac{π^2}{4} -[2u\log(\cot(u/2)) ] _0^{\frac{π}{2}} +2\int_0^{\frac{π}{2}} \log(\cot(\frac{u}{2}) )du

Now 0 π 2 log ( cot ( u 2 ) ) d u = Substituting u=2t = 2 0 π 4 log ( tan ( t ) ) d t \displaystyle\int_0^{\frac{π}{2}} \log(\cot(\frac{u}{2})) du =^{\textrm{Substituting u=2t}} = -2\int_0^{\frac{π}{4}} \log(\tan(t))dt

Substituting tan ( t ) = y \tan(t)=y

= 2 0 1 log ( y ) y 2 + 1 d y = [ 2 log ( y ) arctan ( y ) ] 0 1 + 2 0 1 tan 1 ( y ) y d y \displaystyle=-2\int_0^1 \dfrac{\log(y)}{y^2+1} dy =[-2\log(y) \arctan(y)]_0^1 +2\int_0^1 \dfrac{\tan^{-1}(y)}{y} dy

2 n = 0 ( 1 ) n 1 2 n + 1 0 1 x 2 n d x = 2 n = 0 ( 1 ) n 1 ( 2 n + 1 ) 2 = 2 G \displaystyle 2 \sum_{n=0}^∞ (-1)^{n} \dfrac{1}{2n+1} \int_0^1 x^{2n} dx=2 \sum_{n=0}^∞ (-1)^n \dfrac{1}{(2n+1)^2} = 2G

Final answer will be 4 G π 2 4 \boxed{\displaystyle 4G-\dfrac{π^2}{4}}

Arafat Anik
Jun 8, 2021

Visual representation of the integral:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...