∫ 0 1 ( x arcsin ( x ) ) 2 d x = ?
Notation: G = n = 0 ∑ ∞ ( 2 n + 1 ) 2 ( − 1 ) n ≈ 0 . 9 1 6 denotes the Catalan's constant .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Visual representation of the integral:
Problem Loading...
Note Loading...
Set Loading...
Let's take x = sin ( u ) , the integral becomes ∫ 0 2 π u 2 cot ( u ) cosec ( u ) d u
Using Integrating by parts ,the integral becomes
− [ u 2 cosec ( u ) ] 0 π / 2 + 2 ∫ 0 2 π u cosec ( u ) d u = − 4 π 2 + ∫ 0 2 π u cosec ( u ) d u
Using Parts again − 4 π 2 − [ 2 u lo g ( cot ( u / 2 ) ) ] 0 2 π + 2 ∫ 0 2 π lo g ( cot ( 2 u ) ) d u
Now ∫ 0 2 π lo g ( cot ( 2 u ) ) d u = Substituting u=2t = − 2 ∫ 0 4 π lo g ( tan ( t ) ) d t
Substituting tan ( t ) = y
= − 2 ∫ 0 1 y 2 + 1 lo g ( y ) d y = [ − 2 lo g ( y ) arctan ( y ) ] 0 1 + 2 ∫ 0 1 y tan − 1 ( y ) d y
2 n = 0 ∑ ∞ ( − 1 ) n 2 n + 1 1 ∫ 0 1 x 2 n d x = 2 n = 0 ∑ ∞ ( − 1 ) n ( 2 n + 1 ) 2 1 = 2 G
Final answer will be 4 G − 4 π 2