A calculus problem by John M.

Calculus Level 5

0 1 0 1 0 1 1 1 + x y z d x d y d z \large \int_0^1\int_0^1\int_0^1 \dfrac1{1+xyz} \, dx \; dy \; dz

Find the value of the above integral.

Give your answer to 2 decimal places.


The answer is 0.90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

敬全 钟
Oct 20, 2016

When we deal with multi-variable integration, it may seem scary at first. However, it sometimes can be easily solved by evaluating the inner most integral and then move on to evaluate the next layer of integral. It is just like when you throw a stone into the water, the wavefronts move radially outwards from the source. Here is the evaluation of the integral above. 0 1 0 1 0 1 1 1 + x y z d x d y d z = 0 1 0 1 [ ln 1 + x y z y z ] 0 1 d y d z = 0 1 0 1 ln ( 1 + y z ) y z d y d z = 0 1 0 1 y z 1 2 ( y z ) 2 + 1 3 ( y z ) 3 1 4 ( y z ) 4 + y z d y d z (By Maclaurin series expansion of ln ( 1 + x ) ) = 0 1 0 1 1 1 2 y z + 1 3 ( y z ) 2 1 4 ( y z ) 3 + d y d z = 0 1 [ y y 2 z 2 2 + y 3 z 2 3 2 y 4 z 3 4 2 + ] 0 1 d z = 0 1 1 z 2 2 + z 2 3 2 z 3 4 2 + d z = [ z z 2 2 3 + z 3 3 3 z 4 4 3 + ] 0 1 = 1 1 2 3 + 1 3 3 1 4 3 + = ( 1 + 1 2 3 + 1 3 3 + 1 4 3 + ) 2 ( 1 2 3 + 1 4 3 + 1 6 3 + ) = ( 1 + 1 2 3 + 1 3 3 + 1 4 3 + ) 1 4 ( 1 + 1 2 3 + 1 3 3 + ) = ζ ( 3 ) 1 4 ζ ( 3 ) ( Take note that 1 + 1 2 3 + 1 3 3 + 1 4 3 + = k = 1 1 k 3 = ζ ( 3 ) ) = 3 4 ζ ( 3 ) \begin{aligned} \int^1_0\int^1_0\int^1_0\frac{1}{1+xyz}\ dx\ dy\ dz&=&\int^1_0\int^1_0\left[\frac{\ln\left|1+xyz\right|}{yz}\right]^1_0\ dy\ dz\\ &=&\int^1_0\int^1_0\frac{\ln(1+yz)}{yz}\ dy\ dz\\ &=&\int^1_0\int^1_0\frac{yz-\frac{1}{2}(yz)^2+\frac{1}{3}(yz)^3-\frac{1}{4}(yz)^4+\cdots}{yz}\ dy\ dz\\ &&\color{#3D99F6}\textrm{(By Maclaurin series expansion of }\ln(1+x))\\ &=&\int^1_0\int^1_01-\frac{1}{2}yz+\frac{1}{3}(yz)^2-\frac{1}{4}(yz)^3+\cdots\ dy\ dz\\ &=&\int^1_0\left[y-\frac{y^2z}{2^2}+\frac{y^3z^2}{3^2}-\frac{y^4z^3}{4^2}+\cdots\right]^1_0\ dz\\ &=&\int^1_01-\frac{z}{2^2}+\frac{z^2}{3^2}-\frac{z^3}{4^2}+\cdots\ dz\\ &=&\left[z-\frac{z^2}{2^3}+\frac{z^3}{3^3}-\frac{z^4}{4^3}+\cdots\right]^1_0\\ &=&1-\frac{1}{2^3}+\frac{1}{3^3}-\frac{1}{4^3}+\cdots\\ &=&\left(1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\cdots\right)-2\left(\frac{1}{2^3}+\frac{1}{4^3}+\frac{1}{6^3}+\cdots\right)\\ &=&\left(1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\cdots\right)-\frac{1}{4}\left(1+\frac{1}{2^3}+\frac{1}{3^3}+\cdots\right)\\ &=&\zeta(3)-\frac{1}{4}\zeta(3)\ \ \ \ \color{#3D99F6}\left(\textrm{Take note that } 1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\cdots=\sum^{\infty}_{k=1}\frac{1}{k^3}=\zeta(3)\right)\\ &=&\frac{3}{4}\zeta(3)\ \ \blacksquare \end{aligned}

Nice one...

Sparsh Sarode - 4 years, 5 months ago

Excellent solution! :)

Wee Xian Bin - 4 years, 5 months ago

First of all, obviously

1 1 + x y z = n = 0 ( 1 ) n x n y n z n \frac{1}{1+xyz} = \sum_{n=0}^{\infty} (-1)^{n} x^{n} y^{n} z^{n}

And we can do that because all of the integrals are bounded in the the interval [ 0 , 1 ] [ 1 , 1 ] \left [ 0, 1 \right ] \supset \left [ -1, 1 \right ] . The integral is now easy and it is equal to

S = n = 0 ( 1 ) n ( n + 1 ) 3 S = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)^{3}}

Which looks pretty much like ζ ( 3 ) \zeta(3) . Now define (for fun)

f ( a ) = S + a ζ ( 3 ) = ( a + 1 ) [ n = 1 1 ( 2 n + 1 ) 3 ] + ( a 1 ) [ n = 1 1 ( 2 n ) 3 ] f(a) = S + a \zeta(3) = (a+1)\left [ \sum_{n=1}^{\infty} \frac{1}{(2n+1)^{3}} \right ] + (a-1)\left [ \sum_{n=1}^{\infty} \frac{1}{(2n)^{3}} \right ]

Notice

n = 1 1 ( 2 n ) 3 = 1 8 ζ ( 3 ) \sum_{n=1}^{\infty} \frac{1}{(2n)^{3}} = \frac{1}{8} \zeta(3)

n = 1 1 ( 2 n + 1 ) 3 = ζ ( 3 ) 1 8 ζ ( 3 ) = 7 8 ζ ( 3 ) \sum_{n=1}^{\infty} \frac{1}{(2n+1)^{3}} = \zeta(3) - \frac{1}{8} \zeta(3) = \frac{7}{8} \zeta(3)

Therefore

f ( a ) = ζ ( 3 ) 8 ( 8 a + 6 ) f(a) = \frac{\zeta(3)}{8} (8a + 6)

And

f ( 0 ) = S = 3 4 ζ ( 3 ) f(0) = S = \frac{3}{4} \zeta(3)

Did the same way! Except the last part where I directly evaluated the first few terms of the summation, as we were interested only upto 2 decimal places :p

Sumanth R Hegde - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...