The coefficient of y 4 y^4

What is the coefficient of y 4 y^4 in the formal power series 1 ( 1 2 y ) 3 \dfrac{1}{(1 - 2y)^3} ?


The answer is 240.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

1 ( 1 2 y ) 3 = ( 1 2 y ) 3 = 1 + ( 3 ) ( 2 y ) + ( 3 ) ( 4 ) 2 ! ( 2 y ) 2 + ( 3 ) ( 4 ) ( 5 ) 3 ! ( 2 y ) 3 + ( 3 ) ( 4 ) ( 5 ) ( 6 ) 4 ! ( 2 y ) 4 + \begin{aligned} \frac 1{(1-2y)^3} & = (1-2y)^{-3} \\ & = 1 + (-3)(-2y) + \frac {(-3)(-4)}{2!}(-2y)^2 + \frac {(-3)(-4)(-5)}{3!}(-2y)^3 + \frac {(-3)(-4)(-5)(-6)}{4!}(-2y)^4 + \cdots \end{aligned}

Therefore the coefficient of y 4 y^4 is ( 3 ) ( 4 ) ( 5 ) ( 6 ) 4 ! ( 2 ) 4 = 240 \dfrac {(-3)(-4)(-5)(-6)}{4!}(-2)^4 = \boxed{240} .

Parth Sankhe
Nov 5, 2018

For any index n n ,

( 1 + x ) n = 1 + n x + n ( n 1 ) 2 ! x 2 + n ( n 1 ) ( n 2 ) 3 ! x 3 . . . . . (1+x)^n=1+nx+\frac {n(n-1)}{2!} x^2+\frac {n(n-1)(n-2)}{3!} x^3.....

Thus, coefficient of y 4 y^4 would be

2 4 3 4 5 6 4 ! 2^4\cdot \frac {-3\cdot -4 \cdot -5\cdot -6}{4!}

= 16 × 15 = 240 =16×15=240

Kees Vugs
Nov 5, 2018

1 ( 1 2 y ) \frac{1}{(1 - 2y)} = 1 + 2y + 4y^2 + 8y^3 + 16y^4 + . . . and 1 ( 1 2 y ) 2 \frac{1}{(1 - 2y)^2} = (1 + 2y + 4y^2 + 8y^3 +16y^4 + . . .)^2 = 1 + 4y + 12y^2 + 32y^3 + 80y^4 + . . . . Further 1 ( 1 2 y ) 3 \frac{1}{(1 - 2y)^3} = 1 + 6y + 24y^2 + 80y^3 + 240y^4 + . . . .Powers of y greater than 4 can't contribute to the power of y^4 in the result. Thus the coefficient of y^4 in 1 ( 1 y ) 3 \frac{1}{(1 - y)^3} = 240

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...