The Complexity is Real

Algebra Level 3

True or False .

Let there be a complex number z z such that

{ z = 1 ( z ) 1 \large \begin{cases} |z| = 1 \\ |\Re(z)| \neq 1 \end{cases}

Then i ( z 1 z + 1 ) i \left( \dfrac{ z-1}{z+1} \right) is always a real number.

Notations:

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Efren Medallo
Jun 26, 2017

Let z = a + b i z = a+bi , with a 2 + b 2 = 1 a^2 + b^2 = 1 , and a b s ( a ) 1 \mathrm{abs}(a) \neq 1 , or equivalently, b 0 b \neq 0 .

Evaluating the given expression, we have

i ( ( a 1 ) + b i ( a + 1 ) + b i ) i \bigg( \frac{ (a-1) + bi}{(a+1) +bi} \bigg)

i ( ( a 1 ) + b i ( a + 1 ) + b i ( a + 1 ) b i ( a + 1 ) b i ) i \bigg( \frac{ (a-1) + bi}{(a+1) +bi} \cdot \frac{ (a+1) - bi}{(a+1) - bi} \bigg)

i ( a 2 1 + b 2 + ( a + 1 ) b i ( a 1 ) b i ( a + 1 ) 2 + b 2 ) i \bigg( \frac{ a^2-1 + b^2 + (a+1)bi - (a-1)bi}{(a+1)^2+b^2} \bigg)

i ( a 2 + b 2 1 + 2 b i a 2 + b 2 + 2 a + 1 ) i \bigg( \frac{ \color{#D61F06}a^2 + b^2 \color{#333333} - 1 + 2bi}{\color{#D61F06} a^2+b^2 \color{#333333} + 2a + 1} \bigg)

i ( 1 1 + 2 b i 1 + 2 a + 1 ) i \bigg( \frac{ \color{#D61F06} 1 \color{#333333} - 1 + 2bi}{\color{#D61F06} 1 \color{#333333} + 2a + 1} \bigg)

i ( 2 b i 2 ( a + 1 ) ) i \bigg( \frac{2bi}{2(a+1)} \bigg)

( b a + 1 ) \bigg( \frac{-b}{a+1} \bigg)

And there we have it. That resulting fraction will always be real, given the conditions.

Aareyan Manzoor
Jul 9, 2017

z = 1 z = e 2 i x i e 2 i x 1 e 2 i x + 1 = i ( e i x e i x ) e i x e i x = sin ( x ) cos ( x ) = tan ( x ) |z|=1\to z=e^{2ix}\to i\dfrac{e^{2ix}-1}{e^{2ix}+1}= \dfrac{i(e^{ix}-e^{-ix})}{e^{ix}-e^{-ix}}=\dfrac{-\sin(x)}{\cos(x)}=-\tan(x) R e ( e 2 i x ) 1 x π n 2 t a n ( x ) R |Re(e^{2ix})|\neq 1 \to x\neq \dfrac{\pi*n}{2} \to -tan(x) \in R

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...