The Crazy Ant

Calculus Level 5

A crazy ant is standing on the origin. It begins by walking 1 unit in the + x +x -direction and then turns 4 5 45^\circ counterclockwise and walks 1 2 \frac{1}{2} units in that direction. The ant then turns another 4 5 45^\circ and walks 1 3 \frac{1}{3} units in that direction. The ant keeps doing this endlessly. How far is the ant's final position from its initial position?


The answer is 1.20806.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Consider the plane the crazy ant walks on be a complex plane. The ant starts at the origin 0 + 0 i 0+0i . A turn of 4 5 45^\circ anticlockwise is equivalent to multiplying by e π 4 i e^{\frac \pi 4 i} . Therefore, the spiral walked by the ant can be expressed as:

Z = 1 + e π 4 i 2 + e π 2 i 3 + e 3 π 4 i 4 + = e π 4 i ( e π 4 i + ( e π 4 i ) 2 2 + ( e π 4 i ) 3 3 + ( e π 4 i ) 4 4 + ) By Maclarin series = e π 4 i ln ( 1 e π 4 i ) = e π 4 i ln ( 1 1 2 i 2 ) = e π 4 i ln ( 2 2 e i tan 1 ( 2 + 1 ) ) = e π 4 i ( ln ( 2 2 ) 2 i tan 1 ( 2 + 1 ) ) = e π 4 i ( ln 2 ( 2 2 ) 4 + ( tan 1 ( 2 + 1 ) ) 2 e i tan 1 2 tan 1 ( 2 + 1 ) ln ( 2 2 ) ) \begin{aligned} Z & = 1 + \frac {e^{\frac \pi 4 i}}2 + \frac {e^{\frac \pi 2 i}}3 + \frac {e^{\frac {3\pi}4 i}}4 + \cdots \\ & = e^{-\frac \pi 4 i} \color{#3D99F6} \left(e^{\frac \pi 4 i} + \frac {(e^{\frac \pi 4 i})^2}2 + \frac {(e^{\frac \pi 4 i})^3}3 + \frac {(e^{\frac \pi 4 i})^4}4 + \cdots \right) & \small \color{#3D99F6} \text{By Maclarin series} \\ & = {\color{#3D99F6} - } e^{-\frac \pi 4 i} \color{#3D99F6} \ln \left(1 - e^{\frac \pi 4 i}\right) \\ & = - e^{-\frac \pi 4 i} \ln \left(1 - \frac 1{\sqrt 2} - \frac i{\sqrt 2} \right) \\ & = - e^{-\frac \pi 4 i} \ln \left(\sqrt{2-\sqrt 2} \cdot e^{-i \tan^{-1}(\sqrt 2+1)} \right) \\ & = - e^{-\frac \pi 4 i} \left(\frac {\ln (2-\sqrt 2)}2 -i \tan^{-1}(\sqrt 2+1) \right) \\ & = e^{-\frac \pi 4 i} \left(\sqrt{\frac {\ln^2 (2-\sqrt 2)}4 + (\tan^{-1}(\sqrt 2+1))^2} e^{-i\tan^{-1} \frac {2\tan^{-1}(\sqrt 2+1)}{\ln (2-\sqrt 2)}}\right) \end{aligned}

The distance between the ant's final and initial positions is given by Z = 1 4 ln 2 ( 2 2 ) + ( tan 1 ( 2 + 1 ) ) 2 1.208 |Z| = \sqrt{\frac 14 \ln^2 (2-\sqrt 2) + (\tan^{-1}(\sqrt 2+1))^2} \approx \boxed{1.208} .


Reference: Maclaurin series

Same approach! Small correction only. In the last step, the exponent after the ln \ln should have ln ( 2 2 ) 2 \frac{\ln(2-\sqrt{2})}{2} under. You missed the 2 2 . It doesn't affect Z |Z| , just a small detail.

Guilherme Niedu - 1 year, 10 months ago

Log in to reply

Thanks, I have got it changed.

Chew-Seong Cheong - 1 year, 10 months ago
K T
Aug 10, 2019

The displacements in the E-direction are 1 1 5 + 1 9 1 13 + . . . = 4 n = 0 1 ( 8 n + 1 ) ( 8 n + 5 ) = π + ln ( 3 + 2 2 ) 4 2 = 0.86697298... = A 1-\frac{1}{5}+\frac{1}{9}- \frac{1}{13}+... = 4 \sum_{n=0}^{\infty} {\frac{1}{(8n+1)(8n+5)}}=\frac{π+\ln(3+2\sqrt 2)}{4 \sqrt{2}} = 0.86697298...=A

The displacements in the NE-direction are 1 2 1 6 + 1 10 1 14 + . . . = 4 n = 0 1 ( 8 n + 2 ) ( 8 n + 6 ) = π 8 = 0.39269908... = B \frac{1}{2}-\frac{1}{6}+\frac{1}{10}-\frac{1}{14}+... = 4 \sum_{n=0}^{\infty} \frac{1}{(8n+2)(8n+6)}=\frac{π}{8} = 0.39269908...=B

The displacements in the N-direction are 1 3 1 7 + 1 11 1 15 + . . . = 4 n = 0 1 ( 8 n + 3 ) ( 8 n + 7 ) = π 2 ln ( 1 + 2 ) 4 2 = 0.24374774... = C \frac{1}{3}-\frac{1}{7}+\frac{1}{11}-\frac{1}{15}+... = 4 \sum_{n=0}^{\infty} \frac{1}{(8n+3)(8n+7)}=\frac{π - 2 \ln(1+ \sqrt{ 2})}{4 \sqrt{2}}= 0.24374774...=C

The displacements in the NW-direction are 1 4 1 8 + 1 12 1 16 + . . . = 4 n = 0 1 ( 8 n + 4 ) ( 8 n + 8 ) = ln ( 2 ) 4 = 0.17328679... = D \frac{1}{4}-\frac{1}{8}+\frac{1}{12}-\frac{1}{16}+... = 4 \sum_{n=0}^{\infty} \frac{1}{(8n+4)(8n+8)}=\frac{\ln(2)}{4} = 0.17328679...=D

The total net displacement in the positive x-direction is Δ x = A + 1 2 2 ( B D ) = 1.02212141.. \Delta x= A+\frac{1}{2}\sqrt{2}(B-D)=1.02212141..

The total net displacement in the positive y-direction is Δ y = C + 1 2 2 ( B + D ) = 0.64396018.. \Delta y= C+\frac{1}{2}\sqrt{2}(B+D)=0.64396018..

The overall net displacement is ( Δ x ) 2 + ( Δ y ) 2 = 1.20806328... \sqrt{(\Delta x)^2+ (\Delta y)^2}=\boxed{1.20806328...}

How did you calculate those infinite sums?

Bear 03 - 1 year, 5 months ago
Saswat Prakash
Mar 23, 2020

Fourier series can also be used once you get the distance interms of sinnx/n series ,cosnx/n series.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...