The Devil is in the Details

Calculus Level 5

Consider the recurrence relation f n + 1 ( x ) = x f n ( x ) \large f_{n+1} (x) = x^{ f_n (x) } , for non-negative integers n n with f 0 ( x ) = 1 f_0 (x) = 1 .

lim x 1 f 666 ( x ) 1 x 666 1 \large\displaystyle \lim_{x \to 1} \frac { f_{666} (x) - 1}{x^{666} - 1}

Let the limit above equals to A B \frac AB for coprime positive integers A A and B B .

Denote D D as the absolute difference between the smallest and largest prime factors of A + B A+B .

What is the value of 1 + 2 + 3 + + ( D 2 1 ) + D 2 1 + 2 + 3 + \ldots + (D^2 - 1) + D^2 ?


The answer is 666.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Oct 3, 2014

Because the limit is in the form of 0 0 \frac {0}{0} at x = 1 x = 1 , so L'hopital rule is applicable

Which means we need to evaluate the first derivative of f 666 ( x ) f_{666} (x) at x = 1 x=1

Claim : f n ( 1 ) = 1 f_n ' (1) = 1 for all positive integers n n .

Proof by Mathematical Induction :

Basic Step: for n = 1 n = 1 , f 1 ( 1 ) = 1 f_1 ' (1) = 1 , which is true

Inductive Step: for a positive integer k k , we assume f k ( 1 ) = 1 f_k ' (1) = 1

By recurrence relation, ln ( f k + 1 ( x ) ) = f k ( x ) ln ( x ) \ln \left ( f_{k+1} (x) \right ) = f_k (x) \cdot \ln (x)

Differentiation gives f k + 1 ( x ) f k + 1 ( x ) = f k ( x ) x + f k ( x ) ln ( x ) \large \frac { f_{k+1} ' (x) }{f_{k+1} (x)} = \frac {f_k (x)}{x} + f_k '(x) \cdot \ln (x)

Substitution of x = 1 x = 1 proved that it's true for n = k + 1 n=k+1 too.

Thus the limit is equals to f 666 ( 1 ) 666 1 665 = 1 666 A + B = 667 = 23 × 29 D = 29 23 = 6 \large \frac { f_{666} '(1) }{666 \cdot 1^{665} } = \frac {1}{666} \Rightarrow A+B = 667 = 23 \times 29 \Rightarrow D = 29 - 23 = 6

Hence, with the knowledge of i = 1 n i = n 2 ( n + 1 ) \displaystyle \sum_{i=1}^n i = \frac {n}{2} (n+1) . In this case n = D 2 = 36 n = D^2 = 36 yields the answer 666 \boxed{666}

Did it the same way.Probably it is the only way to do the sum.BTW,this is the first problem where the answer literally stares at one's face.

Arif Ahmed - 6 years, 8 months ago
Ayush Verma
Oct 9, 2014

A s f n + 1 ( x ) = x f n ( x ) a n d f 0 ( x ) = 1 s o , f 1 ( x ) = x 1 , f 2 ( x ) = x x , f 3 ( x ) = x x x a n d s o o n f 1 ( x ) = 1 , f n + 1 ( x ) = f n ( x ) . f n ( x ) . x f n ( x ) 1 o r , f n + 1 ( x ) f n ( x ) = f n + 1 ( x ) . f n ( x ) x . . . . . . ( i ) A s x 1 f 1 ( x ) 1 f 2 ( x ) 1 . . . . . . . . . . . . . . f n ( x ) 1 s o , A B = l i m x 1 f 666 ( x ) 1 x 666 1 = l i m x 1 f 666 ( x ) 666. x 665 . . . . . ( i i ) b y e q n ( i ) , l i m x 1 f n + 1 ( x ) f n ( x ) = 1 l i m x 1 f 666 ( x ) = l i m x 1 f 665 ( x ) = l i m x 1 f 664 ( x ) = . . . . . . . = l i m x 1 f 1 ( x ) = 1 b y e q n ( i i ) , A B = 1 666 A + B = 667 = 23 × 29 D = 29 23 = 6 A n s = ( D 2 ) ( D 2 + 1 ) 2 = 666 As\quad { f }_{ n+1 }(x)={ x }^{ { f }_{ n }(x) }\quad and\quad { f }_{ 0 }(x)=1\quad so,\\ \\ { f }_{ 1 }(x)={ x }^{ 1 },{ f }_{ 2 }(x)={ x }^{ x },{ f }_{ 3 }(x)={ x }^{ { x }^{ x } }\quad and\quad so\quad on\\ \\ { f }_{ 1 }^{ ' }(x)=1,\\ \\ { f }_{ n+1 }^{ ' }(x)={ f }_{ n }(x).{ f }_{ n }^{ ' }(x).{ x }^{ { f }_{ n }(x)-1 }\\ \\ or,\quad \frac { { f }_{ n+1 }^{ ' }(x) }{ { f }_{ n }^{ ' }(x) } =\cfrac { { f }_{ n+1 }(x).{ f }_{ n }(x) }{ x } \quad \quad \quad \quad \quad \quad \quad \quad ......(i)\\ \\ As\quad x\rightarrow 1\\ \\ { f }_{ 1 }(x)\rightarrow 1\\ \\ { { f }_{ 2 }(x)\rightarrow 1 }\\ \\ ..............\\ \\ { f }_{ n }(x)\rightarrow 1\\ \\ so,\\ \\ \cfrac { A }{ B } ={ lim }_{ x\rightarrow 1 }\cfrac { { f }_{ 666 }(x)-1 }{ { x }^{ 666 }-1 } ={ lim }_{ x\rightarrow 1 }\cfrac { { f }_{ 666 }^{ ' }(x) }{ { 666.x }^{ 665 } } \quad \quad .....(ii)\\ \\ by\quad { eq }^{ n }\quad (i),\\ \\ { lim }_{ x\rightarrow 1 }\frac { { f }_{ n+1 }^{ ' }(x) }{ { f }_{ n }^{ ' }(x) } =1\\ \\ \Rightarrow { lim }_{ x\rightarrow 1 }{ f }_{ 666 }^{ ' }(x)={ lim }_{ x\rightarrow 1 }{ f }_{ 665 }^{ ' }(x){ =lim }_{ x\rightarrow 1 }{ f }_{ 664 }^{ ' }(x)\\ \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad ={ .......=lim }_{ x\rightarrow 1 }{ f }_{ 1 }^{ ' }(x)=1\\ \\ by\quad { eq }^{ n }\quad (ii),\\ \\ \cfrac { A }{ B } =\cfrac { 1 }{ 666 } \quad \Rightarrow \quad A+B=667=23\times 29\quad \Rightarrow \quad D=29-23=6\\ \\ Ans=\cfrac { ({ D }^{ 2 })({ D }^{ 2 }+1) }{ 2 } =666

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...