The difference divides power of 2 2

If 2 x + 1 = y 2 2^x+1=y^2 for positive integers x , y x,y find x + y x+y (there is only one possibility)


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Uahnbu Tran
Jun 4, 2015

2 x = ( y + 1 ) ( y 1 ) y + 1 = 2 a , y 1 = 2 b ( a > b , a + b = x ) 2 a 2 b = 2 2 b ( 2 a b 1 ) = 2 2 b = 2 a n d 2 a b 1 = 1 { 2 }^{ x }=\left( y+1 \right) \left( y-1 \right) \\ \Rightarrow y+1=2^{ a },\quad y-1={ 2 }^{ b }\quad \left( a>b,\quad a+b=x \right) \\ \Rightarrow 2^{ a }-{ 2 }^{ b }=2\\ \Rightarrow 2^{ b }(2^{ a-b }-1)=2\\ \Rightarrow { 2 }^{ b }=2\quad and\quad 2^{ a-b }-1=1

Ramiel To-ong
Jun 4, 2015

both x and y = 3 will only satisfy the given condition

Noel Lo
Jun 3, 2015

8+1=9 where x=3, y=3 so x+y = 3+3 = 6.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...