A calculus problem by Syed Hamza Khalid

Calculus Level 3

x 4 = 1 1 3 + 1 5 1 7 + 1 9 + . . . \large \frac{x}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + ...

What is x x equal to ?

e 4 \large \frac{e}{4} π \large \pi i 4 \large i^{4} 2 2 \large \frac{\sqrt{2}}{2} 1 2 \large \frac{1}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Nov 19, 2017

Recall that x 1 |x|\leq 1 ln ( 1 + x ) = x x 2 2 + x 3 3 + ln ( 1 x ) = x x 2 2 x 3 3 \begin{aligned} & \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots \\& \ln(1-x) = -x - \frac{x^2}{2}-\frac{x^3}{3} - \cdots \end{aligned}

Subtracting the above series as ln ( 1 + x ) ln ( 1 x ) = 2 x + 2 x 3 3 + 2 x 5 5 + ln ( 1 + x 1 x ) = 2 ( x + x 3 3 + x 5 5 + ) ln ( 1 + i 1 i ) = 2 ( i + i 3 3 + i 5 5 + ) c c c c c c put x = i, where i = 1 ln ( exp ( i π 2 ) ) = 2 i ( 1 1 3 + 1 5 + ) c c c c c c exp(x) = e x π 4 = 1 1 3 + 1 5 \begin{aligned} & \ln(1+x)-\ln(1-x) = 2x +\frac{2x^3}{3} + \frac{2x^5}{5}+\cdots \\& \ln\left(\frac{1+x}{1-x}\right) = 2\left(x + \frac{x^3}{3}+\frac{x^5}{5} +\cdots \right) \\& \ln\left(\frac{1+ i }{1- i }\right) = 2\left(i +\frac{i^3}{3}+\frac{i ^5}{5}+\cdots \right)\phantom{cccccc} \text{put x = i, where}\text{ i} = \sqrt{-1}\\& \ln(\text{exp}(i \frac{\pi}{2})) = 2i\left(1-\frac{1}{3}+\frac{1}{5}+\cdots\right) \phantom{cccccc}\text{exp(x)}=e^x \\& \frac{\pi}{4} = 1-\frac{1}{3}+\frac{1}{5}\cdots \end{aligned}

Hence the value of x = π x=\pi .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...