The Easy Peasy Sum of Series Part 2

Calculus Level 3

k = 0 2 k + 1 2 2 k + 1 \large \sum_{k=0}^\infty\frac{2k+1}{2^{2k+1}}

The sum above equals to m n \dfrac mn , where m m and n n are coprime positive integers. Compute m + n m+n .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Kartik Sharma
Jul 2, 2014

I hope that you will find my solution very easy.

Let n = 0 2 n + 1 2 2 n + 1 \sum _{ n=0 }^{ \infty }{ \frac { 2n\quad +\quad 1 }{ { 2 }^{ 2n+1 } } } = S

Therefore, S = 1 2 + 3 2 3 + 5 2 5 + 7 2 7 + 9 2 9 . . . . . . \frac { 1 }{ 2 } +\frac { 3 }{ { 2 }^{ 3 } } +\frac { 5 }{ { 2 }^{ 5 } } +\frac { 7 }{ { 2 }^{ 7 } } +\frac { 9 }{ { 2 }^{ 9 } } ......\infty

Then, S/4 = 1 2 3 + 3 2 5 + 5 2 7 + 7 2 9 . . . . . . \frac { 1 }{ { 2 }^{ 3 } } +\frac { 3 }{ { 2 }^{ 5 } } +\frac { 5 }{ { 2 }^{ 7 } } +\frac { 7 }{ { 2 }^{ 9 } } ......\infty

Subtract S/4 from S

S- S/4 = 1 2 + 2 2 3 + 2 2 5 + 2 2 7 + 2 2 9 . . . . . . \frac { 1 }{ 2 } +\frac { 2 }{ { 2 }^{ 3 } } +\frac { 2 }{ { 2 }^{ 5 } } +\frac { 2 }{ { 2 }^{ 7 } } +\frac { 2 }{ { 2 }^{ 9 } } ......\infty

Now, we have an infinite geometric series with a = 1/4 and r = 1/4

Hence,

3S/4 = 1 2 + 1 4 1 1 4 \frac { 1 }{ 2 } + \frac { \frac { 1 }{ 4 } }{ 1\quad -\quad \frac { 1 }{ 4 } }

3S/4 = 1 2 + 1 3 \frac { 1 }{ 2 } +\frac { 1 }{ 3 }

So, S = 10/19 and therefore the answer 19 \boxed { 19 }

Super-Awesome, Calculus-Free approach.......Thanks!

Satvik Golechha - 6 years, 11 months ago

Very nice. I did something quite similar.

Seth Lovelace - 6 years, 11 months ago

S = 10/9 not 10/19

Vijay Simha - 1 year, 9 months ago
Karthik Kannan
Jun 16, 2014

Let us consider the sum:

x + x 3 + x 5 + x 7 + . . . uptill infinite terms x+x^{3}+x^{5}+x^{7}+...\text{uptill infinite terms} where x < 1 |x|<1

By the formula for the sum of the terms of an infinite Geometric Progression the above sum can be written as:

n = 0 x 2 n + 1 = x 1 x 2 \displaystyle\sum_{n=0}^{\infty} x^{2n+1}=\displaystyle\frac{x}{1-x^{2}}

Now differentiating w.r.t. x x we get:

n = 0 ( 2 n + 1 ) x 2 n = 1 + x 2 ( 1 x 2 ) 2 \displaystyle\sum_{n=0}^{\infty} (2n+1)x^{2n}=\displaystyle\frac{1+x^{2}}{\left( 1-x^{2}\right)^{2}}

Now substitute x = 1 2 x=\displaystyle\frac{1}{2} to obtain:

n = 0 2 n + 1 2 2 n = 20 9 \displaystyle\sum_{n=0}^{\infty} \frac{2n+1}{2^{2n}}=\displaystyle\frac{20}{9}

Thus the required answer is 1 2 n = 0 2 n + 1 2 2 n = 10 9 \displaystyle\frac{1}{2}\displaystyle\sum_{n=0}^{\infty} \frac{2n+1}{2^{2n}}=\boxed{\displaystyle\frac{10}{9}}

How do you make your solution look so neat? Mine has a very small font and the summation limits are to the side.

Diego Gerardo Andreé - 6 years, 12 months ago

Log in to reply

Just use \displaystyle before what you want to type and it becomes bigger. For example, by using the following code:\displaystyle\frac{10}{9} we get:

10 9 \displaystyle\frac{10}{9}

instead of

10 9 \frac{10}{9}

The same if used for summations and integrals makes them look a lot better.For example, by using the following code:\displaystyle\sum_{n=0}^{\infty} we get:

n = 0 \displaystyle\sum_{n=0}^{\infty}

instead of

n = 0 \sum_{n=0}^{\infty}

You may also refer this useful post .

Hope that helps : )

Karthik Kannan - 6 years, 11 months ago

Very informative. Thanks for taking your time to answer me.

Diego Gerardo Andreé - 6 years, 11 months ago

M y s o l u t i o n i s s o m e w h a t d i f f e r e n t . C o n s i d e r 2 n + 1 = d d x x 2 n + 1 x = 1 , t h u s n = 0 2 n + 1 2 2 n + 1 = n = 0 d d x x 2 n + 1 2 2 n + 1 x = 1 = d d x n = 0 ( x 2 4 ) n x 2 x = 1 = d d x x 2 1 x 2 4 x = 1 = 8 + 2 x 2 ( 4 x 2 ) 2 x = 1 = 10 9 . My\quad solution\quad is\quad somewhat\quad different.\\ Consider\quad 2n+1={ \frac { d }{ dx } { x }^{ 2n+1 }| }_{ x=1 },thus\quad \\ \sum _{ n=0 }^{ \infty }{ \frac { 2n+1 }{ { 2 }^{ 2n+1 } } } =\sum _{ n=0 }^{ \infty }{ \frac { d }{ dx } \frac { { x }^{ 2n+1 } }{ { 2 }^{ 2n+1 } } |_{ x=1 } } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\frac { d }{ dx } \sum _{ n=0 }^{ \infty }{ { (\frac { { x }^{ 2 } }{ 4 } ) }^{ n } } \frac { x }{ 2 } |_{ x=1 }\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad ={ \frac { d }{ dx } }\frac { \frac { x }{ 2 } }{ 1-\frac { { x }^{ 2 } }{ 4 } } |_{ x=1 }\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\frac { 8+2{ x }^{ 2 } }{ { (4-{ x }^{ 2 }) }^{ 2 } } |_{ x=1 }\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\frac { 10 }{ 9 } .

For a better format, use \text{\[LaTeX code }\) or \text{\(\displaystyle LaTeX code }).

Anastasiya Romanova - 6 years, 12 months ago

Well technically speaking, is diferentiation of each term of a series = = differentiation of the whole series? If its true, is any other condition required ?

Piyal De - 6 years, 11 months ago

Log in to reply

Technically, it is the addition rule applied infinitely many times.

Kenny Lau - 6 years, 11 months ago

Thank you, Valentina.

Diego Gerardo Andreé - 6 years, 11 months ago

Piyal, Yes, differentiation is a linear operator, and the series is defined as long as -2<x<2.

Diego Gerardo Andreé - 6 years, 11 months ago
Austin Stromme
Jul 4, 2014

Here is a non-calculus and heavy summation notation approach: Note that 1 2 2 = 1 2 2 2 2 4 = 1 2 4 + 1 2 4 3 2 6 = 1 2 6 + 1 2 6 + 1 2 6 = \frac{1}{2^2} = \frac{1}{2^2} \\ \frac{2}{2^4} = \frac{1}{2^4} + \frac{1}{2^4} \\ \frac{3}{2^6} = \frac{1}{2^6} + \frac{1}{2^6} + \frac{1}{2^6} \\ \vdots = \cdots

Hence we can "sum vertically" to see that n = 1 n 2 2 n = n = 1 ( i = n 1 2 2 i ) = n = 1 2 2 n ( i = 0 1 2 2 i ) = n = 1 2 2 n 1 1 1 / 4 = 4 3 n = 1 2 2 n = 4 3 1 4 4 3 = 4 9 \displaystyle\sum_{n=1}^{\infty} \frac{n}{2^{2n}} = \sum_{n=1}^{\infty} \left(\sum_{i = n}^{\infty} \frac{1}{2^{2i}} \right) \\ = \displaystyle\sum_{n=1}^{\infty} 2^{-2n} \left(\sum_{i=0}^{\infty} \frac{1}{2^{2i}} \right) = \sum_{n=1}^{\infty} 2^{-2n} \frac{1}{1- 1/4} \\ =\frac{4}{3} \displaystyle\sum_{n=1}^{\infty} 2^{-2n} = \frac{4}{3}\cdot \frac{1}{4} \cdot \frac{4}{3} = \frac{4}{9} .

Therefore

n = 0 2 n + 1 2 2 n + 1 = n = 1 n 2 2 n + n = 0 1 2 2 n + 1 = 4 9 + 1 2 4 3 = 10 9 \displaystyle\sum_{n=0}^{\infty} \frac{2n+1}{2^{2n+1}} = \sum_{n=1}^{\infty} \frac{n}{2^{2n}} + \sum_{n=0}^{\infty} \frac{1}{2^{2n+1}} = \frac{4}{9} + \frac{1}{2} \cdot \frac{4}{3} = \frac{10}{9}

Hence m / m = 10 / 9 m/m = 10/9 and m + n = 10 + 9 = 19 m + n = 10 + 9 = \mathbf{19} .

Kenny Lau
Jul 8, 2014

(NB: This method is not recommended, unless you are running out of time in the exam and wants to get the 1 mark for the answer mark, or if this is a fill-in-the-blank)

Let S ( N ) S(N) be n = 0 N 2 n + 1 2 2 n + 1 \sum\limits^N_{n=0}\frac{2n+1}{2^{2n+1}} .

S(1)=0.5

S(2)=0.875

S(3)=1.03125

S(4)=1.0859375

S(5)=1.103515625

S(6)=1.10888671875

S(7)=1.11047363281

Enough evidence to know that it approaches to 1.111111... = 10/9

Chew-Seong Cheong
Aug 22, 2019

For x < 1 |x| < 1 ,

k = 0 x 2 k + 1 = x 1 x 2 Differentiate both sides w.r.t. x k = 0 ( 2 k + 1 ) x 2 k = 1 + x 2 ( 1 x 2 ) 2 Multiply both sides by x k = 0 ( 2 k + 1 ) x 2 k + 1 = x ( 1 + x 2 ) ( 1 x 2 ) 2 Putting x = 1 2 k = 0 2 k + 1 2 2 k + 1 = 1 2 ( 1 + 1 4 ) ( 1 1 4 ) 2 = 10 9 \begin{aligned} \sum_{k=0}^\infty x^{2k+1} & = \frac x{1-x^2} & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }x \\ \sum_{k=0}^\infty (2k+1)x^{2k} & = \frac {1+x^2}{(1-x^2)^2} & \small \color{#3D99F6} \text{Multiply both sides by }x \\ \sum_{k=0}^\infty (2k+1)x^{2k+1} & = \frac {x(1+x^2)}{(1-x^2)^2} & \small \color{#3D99F6} \text{Putting }x = \frac 12 \\ \sum_{k=0}^\infty \frac {2k+1}{2^{2k+1}} & = \frac {\frac 12\left(1+\frac 14\right)}{\left(1-\frac 14\right)^2} = \frac {10}9 \end{aligned}

Therefore, m + n = 10 + 9 = 19 m+n=10+9 = \boxed{19} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...