The Easy Peasy Sum of Series

Calculus Level 4

Calculate the following sum of series n = 0 ( 1 ) n 4 4 n + 1 ( 4 n + 1 ) \sum_{n=0}^\infty \frac{(-1)^n}{4^{4n+1}(4n+1)}


The answer is 0.24981.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hasan Kassim
Nov 3, 2014

Define the function f ( x ) = n = 0 ( 1 ) n x 4 n + 1 4 4 n + 1 ( 4 n + 1 ) \displaystyle f(x)= \sum_{n=0}^{\infty} \frac{(-1)^nx^{4n+1}}{4^{4n+1}(4n+1)} , where we seek f ( 1 ) f(1) and f ( 0 ) = 0 f(0)=0 .

f ( x ) = n = 0 ( 1 ) n x 4 n 4 4 n + 1 = 1 4 n = 0 ( x 4 256 ) n = 1 4 1 1 + x 4 256 \displaystyle f'(x)= \sum_{n=0}^{\infty} \frac{(-1)^nx^{4n}}{4^{4n+1}}= \frac{1}{4} \sum_{n=0}^{\infty} (-\frac{x^4}{256})^n = \frac{1}{4} \frac{1}{1+\frac{x^4}{256}} (Geometric Series)

= > f ( 1 ) = f ( 1 ) f ( 0 ) = 0 1 f ( x ) d x = 0 1 1 4 1 1 + x 4 256 d x \displaystyle => f(1)=f(1)-f(0)=\int_0^1 f'(x)dx= \int_0^1 \frac{1}{4} \frac{1}{1+\frac{x^4}{256}} dx

= 0 1 4 d u u 4 + 1 ( u = x 4 ) \displaystyle = \int_0^{\frac{1}{4}} \frac{du}{u^4+1} (u=\frac{x}{4}) .

Now this integral can be solved using partial fractions

( x 4 + 1 = ( x 2 + 1 ) 2 2 x 2 = ( x 2 2 x + 1 ) ( x 2 + 2 x + 1 ) x^4+1=(x^2+1)^2-2x^2=(x^2-\sqrt2x+1)(x^2+\sqrt2x+1) )

To get at last the value ln 17 + 4 2 17 4 2 + 2 arctan 4 + 2 4 2 arctan 4 2 4 4 2 0.25 \displaystyle \frac{\ln \frac{17+4\sqrt2}{17-4\sqrt2} + 2\arctan \frac{4+\sqrt2}{4} -2\arctan \frac{4-\sqrt2}{4}}{4\sqrt2} \approx \boxed{0.25}

Rohan Jain
Jun 30, 2014

integrate summation(x^4n*(-1)^n , from 0 to inf)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...