The electric field!

From an isosceles right angled triangle of smaller side a a , a similar triangle of smaller side b b having same mid-point of common hypotenuse , has been removed. Now this arrangement has been given a surface charge density σ \sigma . Find the magnitude of electric field(in N / C N/C ) to the nearest integer at the mid-point of hypotenuse.

Details:

σ = 1.1 × 1 0 7 C / m 2 , a = 30 c m , b = 20 c m , ϵ 0 = 8.85 × 1 0 12 F / m \sigma = 1.1 \times 10^{-7} C/m^2 , a = 30 cm, b = 20 cm , \epsilon_{0} = 8.85 \times 10^{-12} F/m


The answer is 802.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Jul 24, 2014

We are taking two parts of the figure. Electric field Electric field

We take a elemental line charge of width dx .

So we have d E 1 = k λ x ( s i n 45 0 + s i n 45 0 ) = 2 k λ x { dE }_{ 1 }=\frac { k\lambda }{ x } (sin{ 45 }^{ 0 }+sin{ 45 }^{ 0 })=\surd 2\frac { k\lambda }{ x }

Also λ = σ ( d x ) \lambda =\sigma (dx)

d E 1 = 2 k σ d x x \Rightarrow { dE }_{ 1 }=\sqrt { 2 } k\sigma \frac { dx }{ x }

E 1 = ( 2 k σ ) b a d x x = 2 k σ ( l n ( a b ) ) i ^ \Rightarrow { E }_{ 1 }=(\sqrt { 2 } k\sigma )\int _{ b }^{ a }{ \frac { dx }{ x } } =\sqrt { 2 } k\sigma (ln(\frac { a }{ b } ))\hat { i }

Similarly due to the other part E 2 = 2 k σ ( l n ( a b ) ) j ^ { E }_{ 2 }=\sqrt { 2 } k\sigma (ln(\frac { a }{ b } ))\hat { j }

E n e t = 2 k σ ( l n ( a b ) ) i ^ + 2 k σ ( l n ( a b ) ) j ^ { E }_{ net }=\sqrt { 2 } k\sigma (ln(\frac { a }{ b } ))\hat { i } +\sqrt { 2 } k\sigma (ln(\frac { a }{ b } ))\hat { j }

E n e t = 2 k σ ( l n ( a b ) ) = σ 2 π ε 0 ( l n ( a b ) ) \Rightarrow \left| { E }_{ net } \right| =2k\sigma (ln(\frac { a }{ b } ))=\frac { \sigma }{ 2{ \pi \varepsilon }_{ 0 } } (ln(\frac { a }{ b } ))

Putting the values we have E n e t = 802.08 \boxed { { E }_{ net }=802.08 }

You integrated bw the limits a and b can you pls explain how?

Ashwin Gopal - 6 years, 6 months ago

Nice solution but the limits will not be a and b but the factor will cancel after integration

Tushar Gopalka - 6 years, 5 months ago

Darn!! Did some approximations and got 802.82! Thus entered 803.

Harsh Shrivastava - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...