The envelope of line family

Geometry Level 5

Let P ( 2 , 1 ) P(2,1) be a point in circle C C with center at ( 0 , 0 ) (0,0) and a radius of 3 3 . For every point X X on circle C C , a perpendicular straight line is drawn through the midpoint of X P XP . The envelope of the family of all these straight lines is an ellipse of the form A x 2 + B y 2 + C x y + D x + E y + F = 0 Ax^2 + By^2 + Cxy + Dx + Ey + F =0 , where A A and B B - are positive coprime integers. Find A + B + C + D + E + F A+B+C+D+E+F .


The answer is -7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 27, 2020

Consider a x y x''y'' -coordinate system with origin at the center of the ellipse, and x x'' and y y'' axes being along the semi-major and semi-minor axes respectively. Then the equation of the ellipse is x 2 a 2 + y 2 b 2 = 1 \dfrac {x''^2}{a^2} + \dfrac {y''^2}{b^2} = 1 , where a a and b b are the semi-major and semi-minor axes respectively. Rotate the axes by an angle θ \theta counterclockwise about the origin, the equation in the new x y x'y' -coordinate system is

( x cos θ + y sin θ ) 2 a 2 + ( x sin θ + y cos θ ) 2 b 2 = 1 \frac {(x'\cos \theta + y'\sin \theta)^2}{a^2} + \frac {(-x'\sin \theta + y'\cos \theta)^2}{b^2} = 1

Shifting the origin to O ( h , k ) O(h,k) , the center of ellipse in the final x y xy -coordinate system, the equation of the ellipse becomes

( ( x k ) cos θ + ( y k ) sin θ ) 2 a 2 + ( ( x h ) sin θ + ( y k ) cos θ ) 2 b 2 = 1 \frac {((x-k)\cos \theta + (y-k)\sin \theta)^2}{a^2} + \frac {(-(x-h)\sin \theta + (y-k)\cos \theta)^2}{b^2} = 1

We know that ( h , k ) = ( 1 , 1 2 ) (h,k) = \left(1, \frac 12\right) , the midpoint of A P AP , cos θ = 2 5 \cos \theta = \frac 2{\sqrt 5} , and sin θ = 1 5 \sin \theta = \frac 1{\sqrt 5} . To find a a , we note that vertex of the ellipse is "plotted" by the straight line perpendicular to A P AP , that is when A A , P P , and X X are colinear and the vertex is the midpoint of X P XP or a = 3 A P 2 + O P = 3 5 2 5 2 = 3 2 a = \frac {3-AP}2 + OP = \frac {3-\sqrt 5}2-\frac {\sqrt 5}2 = \frac 32 . The co-vertex is plotted when X P XP is perpendicular to A P AP and b = X P 2 = 3 2 A P 2 2 = 1 b = \frac {XP}2 = \frac {\sqrt{3^2-AP^2}}2 = 1 . Then the equation:

4 ( ( x 1 ) 2 5 + ( y 1 2 ) 1 5 ) 2 9 + ( ( x 1 ) 1 5 + ( y 1 2 ) 2 5 ) 2 = 1 ( 4 x + 2 y 5 ) 2 45 + ( x + 2 y ) 2 5 = 1 16 x 2 + 4 y 2 + 16 x y 40 x 20 y + 25 + 9 ( x 2 + 4 y 2 4 x y ) = 45 25 x 2 + 40 y 2 20 x y 40 x 20 y + 25 = 45 5 x 2 + 8 y 2 4 x y 8 x 4 4 = 0 \begin{aligned} \frac {4\left((x-1)\frac 2{\sqrt 5} + \left(y-\frac 12 \right)\frac 1{\sqrt 5}\right)^2}9 +\left(-(x-1)\frac 1{\sqrt 5} + \left(y-\frac 12 \right)\frac 2{\sqrt 5}\right)^2 & = 1 \\ \frac {(4x+2y-5)^2}{45} + \frac {(-x+2y)^2}5 & = 1 \\ 16x^2 + 4y^2 + 16xy - 40x - 20y + 25 + 9(x^2 +4y^2-4xy) & = 45 \\ 25x^2 + 40y^2 - 20xy - 40x - 20y + 25 & = 45 \\ 5x^2 + 8y^2 - 4xy -8x-4-4 & = 0 \end{aligned}

Therefore A + B + C + D + E + F = 5 + 8 4 8 4 4 = 7 A+B+C+D+E+F = 5+8-4-8-4-4 = \boxed{-7} .

Yuriy Kazakov
Mar 28, 2020

The family of all these straight lines has equation ( t t - parametr) \\ F ( x , y , t ) = ( x x 0 ) ( P x R cos t ) + ( y y 0 ) ( P y R sin t ) = 0 F(x,y,t)=(x-x_0)(P_x-R\cos{t})+(y-y_0)(P_y-R\sin{t})=0 \\
x 0 = P x + R cos t 2 x_0=\frac{P_x+R\cos{t}}{2} \\ y 0 = P y + R sin t 2 y_0=\frac{P_y+R\sin{t}}{2} \\

The equation for envelope of the family is find from system (eliminate t t ) https://brilliant.org/wiki/envelope/

F ( x , y , t ) = 0 F(x,y,t)=0 \\ F ( x , y , t ) t = 0 \frac{\partial F(x,y,t)}{\partial t}=0 \\

Next equation find \\ x P x + y P y + R 2 P x 2 P y 2 2 = R x 2 + y 2 x P_x+y P_y+\frac{R^2-{P_x}^2-{P_y}^2}{2}=R \sqrt{x^2+y^2} \\ For R = 3 , P x = 2 , P y = 1 R=3, P_x=2, P_y=1 squaring the equation and have the ellipse equation

\\ 5 x 2 + 8 y 2 4 x y 8 x 4 y 4 = 0. 5x^2+8y^2-4xy-8x-4y-4=0. \\

The answer -7 \fbox {-7} . ​

Nice question and solution! I think some of your letters are off in your question. I think you meant to say an ellipse in the form of A x 2 + B x y + C y 2 + D x + E y + F = 0 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 , where A A , B B , C C , D D , E E , and F F are co-prime integers.

David Vreken - 1 year, 2 months ago

Log in to reply

Here was the correction of the site editor. Thank you. I did the editing of the task now.

Yuriy Kazakov - 1 year, 2 months ago
David Vreken
Mar 28, 2020

Since X X is on the circle with equation x 2 + y 2 = 9 x^2 + y^2 = 9 , let its coordinates be ( p , 9 p 2 ) (p, \sqrt{9 - p^2}) .

Then the midpoint of X P XP is ( p + 2 2 , 9 p 2 + 1 2 ) (\frac{p + 2}{2}, \frac{\sqrt{9-p^2} + 1}{2}) , the slope of X P XP is 9 p 2 1 p 2 \frac{\sqrt{9-p^2} - 1}{p - 2} , and the perpendicular bisector of X P XP is y = p 2 9 p 2 1 ( x p + 2 2 ) + 9 p 2 + 1 2 y = -\frac{p - 2}{\sqrt{9-p^2} - 1}(x - \frac{p + 2}{2}) + \frac{\sqrt{9-p^2} + 1}{2} or y = p x 2 x 2 1 9 p 2 y = \frac{px - 2x - 2}{1 - \sqrt{9 - p^2}} .

The top part of the ellipse follows the minimum height of each x x -value over all p p -values, which occurs when d y d p = 0 \frac{dy}{dp} = 0 . Therefore, d y d p = 9 x 2 p x 2 p x 9 p 2 9 p 2 ( 1 9 p 2 ) 2 = 0 \frac{dy}{dp} = \frac{9x - 2px - 2p - x\sqrt{9 - p^2}}{\sqrt{9 - p^2}(1 - \sqrt{9 - p^2})^2} = 0 , which solves to p = 6 x ( 3 x + 3 x 2 + 2 x + 1 ) 5 x 2 + 8 x + 4 p = \frac{6x(3x + 3 - \sqrt{-x^2 + 2x + 1})}{5x^2 + 8x + 4} .

Substituting p = 6 x ( 3 x + 3 x 2 + 2 x + 1 ) 5 x 2 + 8 x + 4 p = \frac{6x(3x + 3 - \sqrt{-x^2 + 2x + 1})}{5x^2 + 8x + 4} into y = p x 2 x 2 1 9 p 2 y = \frac{px - 2x - 2}{1 - \sqrt{9 - p^2}} and simplifying gives 5 x 2 + 8 y 2 4 x y 8 x 4 y 4 = 0 5x^2 + 8y^2 - 4xy - 8x - 4y - 4 = 0 , so A + B + C + D + E + F = 5 + 8 4 8 4 4 = 7 A + B + C + D + E + F = 5 + 8 - 4 - 8 - 4 - 4 = \boxed{-7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...