The Equilateral Triangle Wizardry Part-2

Geometry Level 5

In an e q u i l a t e r a l \color{#E81990}{equilateral} triangle Δ A B C \color{#69047E}{\Delta ABC} , there is a point M \color{#EC7300}{M} inside the triangle, such that M A : M B : M C = 3 : 4 : 5 \overline{MA}:\overline{MB}:\overline{MC}=\sqrt{3}:\sqrt{4}:\sqrt{5} .

Find A M B \angle AMB in degrees.

(You may need to use the calculator at the end.)


The answer is 133.221.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We can solve it easily by rotations. But, there is also a formula that gives us the side L L of the equilateral triangle knowing a = M A a=MA , b = M B b=MB and c = M C c=MC . That formula is:

L = a 2 + b 2 + c 2 + 3 ( ( 2 a b ) 2 ( a 2 + b 2 c 2 ) 2 ) 2 L=\sqrt{\dfrac{a^2+b^2+c^2+\sqrt{3((2ab)^2-(a^2+b^2-c^2)^2)}}{2}}

Let a = 3 k a=\sqrt{3}k , b = 2 k b=2k and c = 5 k c=\sqrt{5}k .

Substituting we get:

L = 6 + 33 k L=\sqrt{6+\sqrt{33}}k

Using Law of Cosines on A M B \triangle AMB , we get:

cos A M B = a 2 + b 2 L 2 2 a b \cos \angle AMB=\dfrac{a^2+b^2-L^2}{2ab}

cos A M B = 7 k 2 ( 6 + 33 ) k 2 4 3 k 2 \cos \angle AMB=\dfrac{7k^2-(6+\sqrt{33})k^2}{4\sqrt{3}k^2}

c o s A M B = 3 3 11 12 cos \angle AMB=\dfrac{\sqrt{3}-3\sqrt{11}}{12}

A M B 133.221 ° \angle AMB \approx \boxed{133.221°}

In response to Alan Enrique Ontiveros Salazar ..Can you plz say me how u derived dat formula through rotation :)

Akhil Ganti - 6 years, 10 months ago

How do you know the formula?

mathh mathh - 6 years, 10 months ago

Log in to reply

Derived it from rotations, probably.

Daniel Liu - 6 years, 10 months ago

Yes, I derived it from rotations.

Alan Enrique Ontiveros Salazar - 6 years, 10 months ago

Log in to reply

@Alan Enrique Ontiveros Salazar Will you please tell me how to solve it by rotations, or please tell me how we approach it by rotations....

Satvik Golechha - 6 years, 10 months ago
Maria Kozlowska
May 20, 2015

If we make an equilateral K M A \triangle KMA then M B K \triangle MBK has side lengths of M A , M B , M C MA, MB, MC . Then our A M B = B M K + 60 = 133.221 \angle AMB = \angle BMK + 60 = 133.221

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...