The Factorial Pyramid

100 ! 99 ! 98 ! 2 ! 1 ! 0 ! 2 50 \dfrac{\dfrac{ \; \;\; \;\; \;\; \; 100! \; \;\; \;\; \;\; \;}{\dfrac{\; \;\; \;\; \;99!\; \;\; \;\; \;}{\dfrac{ \;\; \;\; \;98!\; \;\; \; }{\dfrac { \;\; \;\vdots\; \; \;}{\dfrac{ \; \;2!\; \; }{\dfrac{ \; 1! \; }{ 0! } }} }}}}{2^{50}}

If the expression above can be simplified to n ! n! , find n n .

Notation : ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jun 26, 2016

Relevant wiki: Factorials Problem Solving - Intermediate

The fraction in simplified form is :

100 ! 99 ! × 98 ! 97 ! × × 2 ! 1 ! × 0 ! 2 50 \dfrac{100\cancel{!}}{\cancel{99!}}\times\dfrac{98\cancel{!}}{\cancel{97!}}\times\cdots\times \dfrac{2!}{1!}\times\dfrac{0!}{2^{50}} = 100 2 × 50 × 98 2 × 49 × 96 2 × 48 × × 2 2 × 1 2 50 =\dfrac{\overbrace{100}^{2\times 50}\times \overbrace{98}^{2\times 49}\times \overbrace{96}^{2\times 48}\times\cdots\times \overbrace{2}^{2\times 1}}{2^{50}} = 2 50 ( 50 × 49 × 48 × × 1 ) 2 50 =\dfrac{\cancel{2^{50}}(50\times 49\times 48\times \cdots\times 1)}{\cancel{2^{50}}}

= 50 ! \large =\boxed{50!}

Wow, that's better and much simpler than my solution.

William Pan - 4 years, 11 months ago

Log in to reply

Thanks... :-)

Rishabh Jain - 4 years, 11 months ago
William Pan
Jun 26, 2016

First we can start by finding the bottom part of this gigantic numerator.

1 ! 0 ! = 1 \frac {1!}{0!}\quad =\quad 1

3 ! 2 ! = 3 \frac {3!}{2!}\quad =\quad 3

4 ! 3 = 4 × 2 \frac {4!}{3}\quad =\quad 4\times 2

5 ! 4 × 2 = 5 × 3 \frac {5!}{4\times 2}\quad =\quad 5\times 3

6 ! 5 × 3 = 6 × 4 × 2 \frac {6!}{5\times 3}\quad =\quad 6\times 4\times 2

7 ! 6 × 4 × 2 = 7 × 5 × 3 \frac {7!}{6\times 4\times 2}\quad =\quad 7\times 5\times 3

See the pattern here?

For all x! divided by the previous output, { F o r a l l x t h e s e t o f a l l e v e n n u m b e r s , O u t p u t = x ( x 2 ) ( x 4 ) ( 4 ) ( 2 ) F o r a l l x t h e s e t o f a l l o d d n u m b e r s , O u t p u t = x ( x 2 ) ( x 4 ) ( 5 ) ( 3 ) \begin{cases} For\quad all\quad x\quad \in \quad the\quad set\quad of\quad all\quad even\quad numbers,\quad Output=x(x-2)(x-4)\cdots (4)(2) \\ For\quad all\quad x\quad \in \quad the\quad set\quad of\quad all\quad odd\quad numbers,\quad Output=x(x-2)(x-4)\cdots (5)(3) \end{cases}

Let's plug in 100 for x into the first case, since 100 is an even number. We now have: 100 × 98 × 96 × 94 × 92 × 90 × × 10 × 8 × 6 × 4 × 2 100\times 98\times 96\times 94\times 92\times 90\times \cdots \times 10\times 8\times 6\times 4\times 2

We're not done here yet. We have to divide that whole thing by 2 50 {2}^{50} . Divide each term by 2, and we get: 50 × 49 × 48 × 47 × 46 × 45 × × 5 × 4 × 3 × 2 × 1 50\times 49\times 48\times 47\times 46\times 45\times \cdots \times 5\times 4\times 3\times 2\times 1

The problem tells you to put it into factorial form. In this case, we have 50 ! 50! .

\therefore The answer is 50 50

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...